EC 8691-Microprocessor and Microcontroller Unit-1

UNIT-1
The 8086 Microprocessor

Introduction to 8086 — Microprocessor architecture — Addressing modes - Instruction set and
assembler directives — Assembly language programming — Modular Programming - Linking and
Relocation - Stacks - Procedures — Macros — Interrupts and interrupt service routines — Byte and
String Manipulation.

1.

Introduction to 8086

8086-HARDWARE ARCHITECTURE
AUQ: Explain the features of 8086 microprocessor. (May 2011, 8 Marks)
The features of 8086 are:

The 8086 is a 16 bit processor

The 8086 has a 16 bit data bus

The 8086 has a 20 bit address bus

Direct addressing capability 1M byte of memory(2%°)

It provides fourteen 16 bit register

24 operand addressing modes

Bit, byte, word and block operations.

8 and 16 bit signed and unsigned arithmetic operations including multiply and divide
Four general purpose 16 bit registers: AX, BX, CX, DX

Two pointer group registers: stack pointer (SP), Base pointer(BP)

Two index group registers: source index (SI), destination index (DI)

Four segment registers: code segment (CS), Data segment (DS), Stack segment (SS), Extra
segment(ES)

6 Status flag and 3 control flags.

Memory is byte addressable- each address stores an 8 bit value.

Address can be up to 32 bit long, resulting in 4GBof memory.

Range of clock rates: SMHZ for8086, SMHZ for8086-2, 10MHZ for8086-1
Multibus system compatible interface

Available in 40 pin plastic package and lead cerdip.

8086 Microprocessor Architecture:

AUQ: Explain the internal architecture of 8086 microprocessor.(Dec-2003,04,06,08,11,12,13,
May-2003,05,07,08,10,11,15, May 2016, Dec 2016, May 2017)

The internal functions of 8086 processor are partitioned logically into two processing units.

1

EC 8691-Microprocessor and Microcontroller Unit-1
The 8086 CPU is divided into two independent functional parts,

Bus Interface Unit (BIU)

Execution Unit (EU)

The BIU and EU function independently.

The BIU interface the 8086 to the outside world. The BIU fetches, reads data from memory and

A N

ports, and writes data to memory and I/O ports.
v EU receives program instruction codes and data from the BIU, executes these instructions and
stores the results either in general registers or output them puts all its data through the BIU.
The BIU contains
1. Segment Registers, 2. Instruction Pointer (IP), 3.Instruction Queue

The EU contains

1. ALU

2. General purpose registers
3. Index registers

4. Pointers

5. Flag register

MEMORY
INTERFACE

o e e S S ————————— —— ———— —————— - - ————————————— —— > f————m———

r bl
i C-BUS :
1 < L |
1 8 |
| ; INSTRUCTION |
| STREAM i
: 4 BYTE |
! 3 QUEUE |
I 2 '
I : . :
! o TR ——— =
. i |
|
| | |
: I CONTROL |
Bosaicus ' | SYSTEM |
————————————————————— I
|
i ¢ |
| EU (, A-BUS :
| |
|
! 1
i AH AL :
: BH BL |
| CH cL ARITHMETIC |
i OH DL LOGIC UNIT :
I sp
| BP } L A l
| S1 | j) :
I oI t I
: OPERANDS |
' FLAGS 4 i
L J

EC 8691-Microprocessor and Microcontroller Unit-1
General Purpose Registers

All general registers of the 8086 microprocessor can be used for arithmetic and logic operations. The 16
bit general purpose registers are
1. Accumulator register (AX)
2. Base register (BX)
3. Count register (CX)
4. Data register (DX)
(i) Accumulator register (AX)
v Accumulator (AX) is a 16 bit register; consists of two 8-bit registers AL and AH.
v" AL contains the low-order byte of the word, and AH contains the higher order byte.
v Accumulator can be used for Input/ Output (I/O) operations and string manipulation.
(ii) Base register (BX)
v’ Base register (BX) is a 16 bit register; consist of two 8-bit registers BL and BH.
v BL consist the lower order byte of the word, and BH contains the higher order byte.
v BX register contains a data pointer used for based, based indexed or register indirect addressing.
(iii) Count register (CX)
v Counter register (CX) is a 16 bit register; consists of two 8-bit registers CL and CH.
v CL register contain the low order byte of the word, and CH contains the high order byte.
v Count register can be used as a counter in string manipulation and shift/ rotate instructions.
(iv)Data register (DX)
v' Data register (CX) is a 16 bit register; consists of two 8-bit registers DL and DH.
v DL register contain the low order byte of the word, and DH contains the high order byte.
v Data register can be used as a port number in I/O operations.
v In integer 32-bit multiply and divide instruction the DX register contains higher order word of the
initial or resulting number.
Segment Registers
There are four different 64 KB segments for instructions, stack, data and extra data.
The segment registers are:
1. Code segment (CS)
2. Stack segment (SS)
3. Data segment (DS)
4. Extra segment (ES)

EC 8691-Microprocessor and Microcontroller Unit-1
(i) Code segment (CS)

v' Code segment is a 16-bit register containing address of 64 KB segment with processor instructions.
v The processor uses CS register for all accesses to instructions referenced by instruction pointer (IP).
v CS register cannot be changed directly.
v' The CS register is automatically updated during FAR JUMP, FAR CALL and FAR RET
instructions
(ii) Stack segment (SS)
v’ Stack segment is a 16-bit register containing address of 64KB segment with program stack.
v By default, the processor assumes that all data referenced by the stack pointer (SP) and base
pointer (BP) registers are located in the stack segment.
v' SS register can be changed directly using POP instruction.
(iii) Data segment (DS)
v Data segment is a 16-bit register containing address of 64KB segment with program data.
v By default, the processor assumes that all data referenced by general registers (AX, BX, CX, and
DX) and index register (SI, DI) is located in the data segment.
v DS register can be changed directly using POP and LDS instructions.
(iv) Extra segment (ES)
v' Extra segment is a 16-bit register containing address of 64KB segment, usually with program data.
v' By default, the processor assumes that the DI register references the ES segment in string
'manipulation instructions.
v" ES register can be changed directly using POP and LES instructions.
v" Tt is possible to change default segments used by general and index registers by prefixing instructions
with a CS, SS, DS or ES prefix.
Pointer Registers
(i) Stack Pointer (SP)
Stack pointer is a 16-bit register pointing to program stack.
(ii) Base Pointer (BP)
v’ Base pointer is a 16-bit register pointing to data in the stack segment.

v" BP register is usually used for based, based indexed or register indirect addressing.

EC 8691-Microprocessor and Microcontroller Unit-1
Index Registers: (i) Source Index (SI)

v Source index is a 16-bit register.
v Sl is used for indexed, based indexed and register indirect addressing, as well as a source data
address in string manipulation instructions.
(ii) Destination Index (DI)
v" Destination index is a 16-bit register.
v' DI is used for indexed, based indexed and register indirect addressing, as well as a destination
data address in string manipulation instructions.
Instruction Pointer (IP)
v' Instruction pointer is a 16-bit register. The operation is same as the program counter.
v" The IP register is updated by the BIU to point to the address of the next instruction.
v Programs do not have direct access to the IP, but during execution of a program the IP can be
modified or saved and restored from the stack.
Flag register
Flag register is a 16-bit register containing nine 1-bit flags:
15 |14 (13 |12 |11 {10 |9 |8 |7 |6 |5 |4 |3 |2 1 0
OF | DF |IF | TF | SF | ZF AF PF CF
Six status or condition flags (OF, SF, ZF, AF, PF, CF)
Three control flags (TF, DF, IF)

* Overflow Flag (OF) — It is set if an overflow occurs, i.e., a result is out of range.

+ Sign Flag (SF) — It is set if the most significant bit of the result is set.

» Zero Flag (ZF) — It is set if the result is zero.

* Auxiliary carry Flag (AF) — It is set if there is a carry out of bit 3 during addition or borrow by bit
3 during subtraction. This flag is used exclusively for BCD arithmetic.

* Parity Flag (PF) — It is set to 1 if the low-order 8-bits of the result contain an even number of 1s.

» Carry Flag (CF) — It is set if carry from or borrow to the most significant bit during last result
calculation.

» Trap Flag (TF) — if set, a trap is executed after each instruction.

* Direction Flag (DF) — Used by string manipulation instructions. If set then string
manipulation instructions will auto- decrement index registers. If cleared then the index
registers will be auto-incremented.

* Interrupt-enable Flag (IF) - Setting this bit enables maskable interrupts.

EC 8691-Microprocessor and Microcontroller Unit-1
Instruction Queue:

v' . The instruction queue is a First-In-First-out (FIFO) group of registers where 6 bytes of instruction
code is pre-fetched from memory.

v’ It is being done to speedup program execution by overlapping instruction fetch and execution.
This mechanism is known as PIPELINING.

v' If the queue is full, the BIU does not perform any bus cycle. If the BIU is not full and can store

atleast 2 bytes and EU does not request it to access memory, the BIU may pre-fetch instructions.
v’ If the BIU is interrupted by the EU for memory access while pre-fetching, the BIU first completes
fetching and then services the EU. In case of JMP instruction, the BIU will reset the queue and
.begin refilling after passing the new instruction to the EU.
ALU: Arithmetic and Logic Unit
ALU is a 16 bit register. It can add, subtract, increment, decrement, complement, shift numbers and
performs AND, OR, XOR operations.

Control unit:

Generates timing and control signals to perform the internal operations of the microprocessor.

3. The 8086 Addressing Modes
AUQ: What are the addressing modes in 8086? Explain with example.(Dec-2006,07,08,10,11,
May2006,07,08,09,11,15, May 2016, Dec 2016)
Addressing modes in 8086:

The 8086 memory addresses are calculated by adding the segment register contents to an offset
address. The offset address calculation depends on the addressing mode being used. The total number of
address lines in the 8086 is 20 whereas the segment registers are 16 bits. The actual address in memory
(effective address) is calculated as per the following steps.

* The segment register contents are multiplied by 10H, thus, shifting the contents left by 4 bits.

This results in the starting address of the segment in memory.

* The offset address is calculated. The offset address is basically the offset of the actual memory
location from the starting location of the segment. The calculation of this offset value depends on
the addressing mode being used.

* The offset address is added to the starting address of the segment to get the effective address, i.e.

the actual memory address.

EC 8691-Microprocessor and Microcontroller Unit-1
Effective Address — 16 bits

+ 4 bits

Segment Address — 16 bits

il

Physical Address — 20 bits

Suppose a segment register contents are xyzwH, and the offset value calculated is abcdH, then:

» Starting address of the segment

* Offset address

* Effective address

The addressing modes specify the location of the operand and also how its location may be

determined. The following addressing modes are supported in the 8086.

o Register Addressing Mode
o Immediate Addressing Mode
o Direct Memory Addressing Mode
. Register Indirect Addressing Mode
o Base plus Index Register Addressing Mode
J Register Relative Addressing Mode
o Base plus Index Register Relative Addressing Mode
o String Addressing Mode
Register Addressing Mode
When both destination and source operands reside in registers, the addressing mode is known as
register addressing mode. Following are the examples:
» MOVAX,BX
Move the contents of BX register to AX register. The contents of BX register remain unchanged.
» AND AL, BL
AND the contents of AL register with the contents of BL register and place the resultant contents
in AL register.
Immediate Addressing Mode
When one of the operands is part of the instruction, the addressing mode is known as immediate

addressing mode. Examples are given below

EC 8691-Microprocessor and Microcontroller Unit-1
e MOV CX, 2346H

Copy into CX the 16-bit data 2346H.
> SUB AL, 24H
Subtract 24H from the contents of AL register and put the result in AL register.
Direct Memory Addressing Mode
In this mode, the 16-bit offset address is part of the instruction as displacement field. It is stored as 16-bit
unsigned or 8-bit sign-extended number.
» MOV (4625H), DI
Copy the contents of DL register into memory locations calculated from Data Segment register and offset
4625H.
» OR AL, (3030H)
OR the contents of AL register with the contents of memory location calculated from DS register and
offset 3030H.
Register Indirect Addressing Mode
In this addressing mode, the offset address is specified through pointer register or index register.

For index register, the SI (Source Index) register or DI (Destination Index) register may be used,
whereas for pointer register, BX (Base Register) register or BP (Base Pointer) register may be used.
Following are some examples of the application of the register indirect addressing mode.

» MOV AL, (BP)

Copy into AL register the contents of memory location, whose address is calculated using offset as
contents of BP register and the contents of DS register.

Base plus Index Register Addressing Mode

In this mode, both base register (BP or BX) and index register (SI or DI) are used to indirectly

address the memory location. An example is given below.
» MOV (BX + DI), AL
Copy the contents of AL register into memory location whose address is calculated using the contents of
DS (Data Segment), BX (Base Register) and DI (Destination Index) registers.
Register Relative Addressing Mode

This mode is similar to base plus index addressing mode. In this mode, the offset is calculated using

either a base register (BP, BX) or an index register (SI, DI) and the displacement specified as an 8-bit or a

16-bit number, as part of the instruction.

EC 8691-Microprocessor and Microcontroller Unit-1
» MOV AX, (DI + 06)

Copy to AL the contents of memory location whose address is calculated using DS (Data Segment), DI
(Destination Index) register with displacement of 06, and copy to AH the contents of the next higher
memory location.
Base plus Index Register Relative Addressing Mode
This addressing mode is basically the combination of base plus index register addressing mode and
register relative addressing mode. To find the address of the operand in memory, a base register (BP or
BX), an index register (DI or SI) and the displacement which is specified in instruction is used along with
the data segment register. For example:
» MOV (BX + DI +2),CL
Copy the contents of the CL register to the memory location whose address is calculated using DS (Data
Segment), BX (Base Register) and DI (Destination Index) registers and 02 as displacement.
String Addressing Mode
In this addressing mode, the string instruction uses index registers implicitly to access memory.
Example: MOVSB
Copy the byte from the source string location determined by DS and SI to the destination string
location determined by ES and DI.
» The addressing modes for branch related instructions are
» Intrasegment direct (within the same segment)
» Intrasegment Indirect
» Intersegment Direct (Control transfer to different segment)

» Intersegment Indirect

Intrasegment direct (within the same segment)

Displacement

Effective Address

IP

If the displacement is 8 bit long, it is called short jump SJMP

If the displacement is 16 bit long, it is called Long jump LIMP.

For example CALL NEAR

A NEAR JMP is a jump where destination location is in the same code segment. In this case only IP

9

EC 8691-Microprocessor and Microcontroller Unit-1
is changed.

Intrasegment Indirect

The content of register or memory is accessed using any of the above data related addressing
mode except immediate mode.

Intersegment Direct (control transfer is in different segment)
The purpose of the addressing mode is to provide a means of branching from one code
segment to another .Replaces the content of IP with the part of the instruction and the contents of the CS
with another part of instruction.

Example: FAR CALL
A FAR JMP is a jJump where destination location is from a different segment. In this case
both IP and CS are changed as specified in the destination.

Intersegment Indirect
The content of memory block containing 4 bytes.ie IP (LSB),IP(MSB),CS (LSB),and CS(MSB)

sequentially .The starting address of the memory block may be referred using any of the addressing mode

except immediate mode.

4. The instruction set of 8086.

Explain the instruction set of 8086 microprocessor.

Give three examples for the following 8086 microprocessor instructions: String Instructions,
Process Control Instruction, Program Execution Transfer Instructions and Bit manipulation
Instructions. (May 2010)(June 2016)

Explain the data transfer, arithmetic and branch instructions with examples. (June 2016)

Intel 8086 has approximately 117 instructions. These instructions are used to transfer data between
registers, register to memory, memory to register or register to I/O ports and other instructions are used
for data manipulation.

But in Intel 8086 operations between memory to memory is not permitted. These instructions are
classified in to six-groups as follows.

1. Data Transfer Instructions
Arithmetic Instructions
Bit Manipulation Instructions
String Instructions

Program Execution Transfer Instructions

N v oA W

. Processor Control Instructions

10

EC 8691-Microprocessor and Microcontroller Unit-1
Data Transfer Instructions

Input/Qutput
IN Input byte or word
ouT Output byte or word
Address Object and Stack Frame
LEA Load effective address
LDS Load pointer using DS
General. Purpose LES Load pointer using ES
ENTER Build stack frame
Moy Move byte or word
LEAVE Tear down stack frame
PUSH Push word onto stack
POP Pop word off stack Flag Transfer
PUSHA Push registers onto stack LAHF Load AH register from flags
POPA Pop registers off stack SAHF Store AH register in flags
XCHG Exchange byte or word PUSHF Push flags from stack
XLAT Translate byte POPF Pop flags off stack
1. MOV

MOV destination, source
This (Move) instruction transfers a byte or a word from the source operand to the destination operand.
(DEST) «— (SRC), DEST = Destination, SRC = Source
Example:
MOV AX, BX
MOVAX, 2150H
MOV AL, [1135]
MOV [4186], AL
MOV SS, DX
MOV [BX], DS
2. PUSH
PUSH Source
This instruction decrements SP (stack pointer) by 2 and then transfers a word from the source operand
to the top of the stack now pointed to by stack pointer.
(SP) « (SP)-2
((SP) + 1: (SP)) < (SRC)

Example:

11

EC 8691-Microprocessor and Microcontroller Unit-1
PUSH SI

PUSH BX
3. POP
POP destination
This instruction transfers the word at the current top of stack (pointed to by SP) to the destination
operand and then increments SP by 2, pointing to the new top of the stack.
(DEST) « ((SP) + 1:(SP))
(SP) «— (SP) +2
Example:
POP DX
POP DS
4. LAHF
Load Register AH from Flags
This instruction copies Sign flag(S), Zero flag (Z), Auxiliary flag (AC). Parity flag (P) and Carry flag
(C) of 8085 into bits 7, 6, 4, 2 and 0 respectively, of register AH. The content of bits 5, 3 and 1 is

undefined.

AHe S |1Z | X |A X P | X |C

5. SAHF
Store Register AH into Flags

This instruction transfers bits 7, 6, 4, 2 and 0 from register AH into S, Z, AC, P and C flags respectively,
thereby replacing the previous values.

S |1Z | X |A X P X |C —AH
6. XCHG

XCHG destination, source

This (Exchange) instruction switches the contents of the source and destination operands.
(Temp) «— (DEST)
(DEST) « (SRC)
(SRC) « (Temp)
Example:
XCHG AX, BX
XCHG BL, AL

12

EC 8691-Microprocessor and Microcontroller Unit-1
7. XLAT

XLAT table

e This (Translate) instruction replaces a byte in the AL register with a byte from a 256-byte, user-coded
translation table.

o XLAT is useful for translating characters from one code to another like ASCII to EBCDIC. Register
BX is the starting point of the table. The byte in AL is used as an index into the table and is replaced
by the byte at the offset in the table corresponding to AL's binary value.

AL «— ((BX) + (AL))

Example :

XLAT ASCII TAB
XLAT Table 3

8. LEA
LEA destination, source
This (Load Effective Address) instruction transfers the offset of the source operand (memory) to the

destination operand (16-bit general register).

(REG) — EA

Example :

LEA BX, [BP] [DI] LEA SI, [BX + 02AF H]

9. LDS
LDS destination, source
This (Load pointer using DS) instruction transfers a 32-bit pointer variable from the source operand

(memory operand) to the destination operand and register DS.

(REG) « (EA)
(DS« (EA+2)

Example:

LDS SI, [6ACIH]

10. LES
LES destination, source
This (Load pointer using ES) instruction transfers a 32-bit pointer variable from the source operand

(memory operand) to the destination operand and register ES.

(REG) — (EA)
(ES) < (EA+2)

13

EC 8691-Microprocessor and Microcontroller Unit-1
Example:

LES DI, [BX]
11. IN
IN accumulator, port
This (Input) instruction transfers a byte or a word from an input port to the accumulator (AL or AX).
(DEST) « (SRC)
Example:
IN AX, DX
IN AL, 062H
12. OUT
OUT port, accumulator
This (Output) instruction transfers a byte or a word from the accumulator (AL or AX) to an output port.
(DEST) « (SRC)
Example:
OUT DX, AL
OUT 31, AX

Arithmetic Instructions

Addition

ADD Add byte or word
ADC Add byte or word with carry

INC Increment byte or word by 1

AAA ASCIl adjust for addition |

DAA | Decimal adjust for addiion Multiplication
Subtraction MUL Multiply byte or word unsigned

IMUL Integer multiply byte or word
AAM ASCII adjust for multiplication

SUB Subtract byte or word
SBB Subtract byte or word with borrow

Division

DEC Decrement byte or word by 1
NEG Negate byte or word

DIV Divide byte or word unsigned
DIV Integer divide byte or word

CMP | Compare byte or word AAD | ASCII adjust for division
AAS ASCII adjust for subtraction CBW Convert byte to word
DAS Decimal adjust for subtraction CWD Convert word to double-word

14

EC 8691-Microprocessor and Microcontroller Unit-1
1. ADD

ADD destination, source

This (Add) instruction adds the two operands (byte or word) and stores the result in destination operand.

(DEST) « (DEST) + (SRC)

Example:

ADD CX, DX

ADD AX, 1257 H

ADDBX, [CX]
2. ADC

ADC destination, source

This (Add with carry) instruction adds the two operands and adds one if carry flag (CF) is set and
stores the result in destination operand.

(DEST) « (DEST) + (SRC) + 1
Example:

ADC AX, BX

ADC AL, 8

ADC CX, [BX]
3. SUB

SUB destination, source

This (Subtract) instruction subtracts the source operand from the destination operand and the result is
stored in destination operand.

(DEST) « (DEST) - (SRC)
Example:

SUB AX, 6541 H

SUB BX, AX

SUB SI, 5780 H
4. SBB

SBB destination, source

This (Subtract with Borrow) instruction subtracts the source from the destination and subtracts 1 if
carry flag (CF) is set. The result is stored in destination operand.

(DEST) «— (DEST) - (SRC) -1

Example:

15

EC 8691-Microprocessor and Microcontroller Unit-1
SBB BX, CX

SBB AX, 2
5. CMP
CMP destination, source
This (Compare) instruction subtracts the source from the destination, but does not store the result.
(DEST) - (SRC)
Example:
CMP AX, 18
CMP BX, CX
6. INC
INC destination
This (Increment) instruction adds 1 to the destination operand (byte or word).

(DEST) « (DEST) + 1

Example:
INC BL
INCCX
7. DEC
DEC destination
This (Decrement) instruction subtracts 1 from the destination operand.
(DEST) « (DEST)-1
Example:
DEC BL
DEC AX
8. NEG
NEG destination
This (Negate) instruction subtracts the destination operand from 0 and stores the result
in destination. This forms the 2's complement of the number.
(DEST) « 0 - (DEST)
Example: NEG AX
NEG CL

16

EC 8691-Microprocessor and Microcontroller Unit-1
9. DAA

This (Decimal Adjust for Addition) instruction converts the binary result of an ADD or ADC
instruction in AL to packed BCD format.

If the auxiliary carry flag is set or the low 4 bits of AL are greater than 9, then 06 H is added to AL. If
the carry flag is set or the high 4 bits of AL are greater than 9, then 60 H is added to the AL.
10. DAS

This (Decimal Adjust for Subtraction) instruction converts the binary result of a SUB or SBB
instruction in AL to packed BCD format.
11.AAA

This (ASCII Adjust for Addition) instruction adjusts the binary result of ADD or ADC instruction.

If bits 0-3 of AL contain a value greater than 9, or if the auxiliary carry flag (AF) is set, the CPU adds
06 to AL and adds 1 to AH. The bits 4-7 of AL are set to zero.

(AL) <~ (AL) + 6

(AH) < (AH) +1

(AF) <1
Example:

AAA

Before execution
AH AL
00 OB
After execution
AH AL
01 01
12. AAS
This (ASCII Adjust for Subtraction) instruction adjusts the binary result of a SUB or SBB instruction.
If D3 - Do of AL>9,
(AL) < (AL)-6
(AH) < (AH) -1
(AF) «1
13.MUL
MUL source

17

EC 8691-Microprocessor and Microcontroller Unit-1
e This (Multiply) instruction multiply AL or AX register by register or memory location contents.

e Both operands are unsigned numbers.
e [Ifthe source is a byte (8 bit), then it is multiplied by register AL and the result is stored in AH and AL.
e If the source operand is a word (16 bit), then it is multiplied by register AX and the result is stored in
AX and DX registers.
If 8 bit data, (AX) « (AL) x (SRC)
If 16 bit data, (AX), (DX) < (AX) x (SRC)
Example:
MUL25
MUL CX.
MULBL
14.IMUL
IMUL Source
This (Integer Multiply) instruction performs a signed multiplication of the source operand and the
accumulator.
If 8 bitdata, (AX) <« (AL) x (SRC)
If 16 bitdata, (AX), (DX) « (AX) x (SRC)
Example:
IMUL 250
IMUL BL
15. AAM
This (ASCII Adjust for Multiplication) instruction adjusts the binary result of a MUL instruction. AL is
divided by 10(0AH) and quotient is stored in AH. The remainder is stored in AL.
(AH) < (AL/OAH)
(AL) <« Remainder
16. DIV
DIV Source
e This (Division) instruction performs an unsigned division of the accumulator by the source operand.
e [t allows a 16 bit unsigned number to be divided by an 8 bit unsigned number, or a 32 bit unsigned
number to be divided by a 16 bit unsigned number.
e If byte (8-bit) operation is performed, the 8 bit quotient is stored to AL and 8 bit remainder is stored
to AH register.

18

EC 8691-Microprocessor and Microcontroller Unit-1

e [f the source operand is a word (16 bit), the 16 bit quotient is stored in AX and the remainder is stored
in DX register.
For 8 bit data, AX / source
(AL) <« Quotient
(AH) < Remainder
For 16 bit data, AX, DX / Source
(AX) <« Quotient
(DX) < Remainder
Example:
DIV CX
DIV 321
17.ID1V
IDIV source
This (Integer Division) instruction performs a signed division of the accumulator by the source operand.
For 8 bit data, AX/ Source
(AL) < Quotient
(AH) «— Remainder
For 16 bit data, AX, DX/Source
(AX) <« Quotient
(DX) «— Remainder
Example:
IDIV CL
IDIVAX
18. AAD
This (ASCII Adjust for Division) instruction adjusts the unpacked BCD dividend in AX before a
division operation. AH is multiplied by 10(0AH) and added to AL. AH is set to zero.
(AL) < (AH x 0AH) + (AL)
(AH) <0
19. CBW
This (Convert Byte to Word) instruction converts a byte to a word. It extends the sign of the byte in
register AL through register AH.

19

EC 8691-Microprocessor and Microcontroller Unit-1
This instruction can be used for 16 bit IMUL or IDIV instruction.

Example:
- CBW
Before execution - After execution
AL - AH AL
|
AL AH AL

]

20. CWD

This (Convert Word to Double word) instruction converts a word to a double word. It extends the sign of
the word in register AX through register DX.

If AX <8000 H, then DX = 0000 H

If AX > 8000 H, then DX = FFFFH

Example:

CWD
Before execution After execution

AX DX AX

Bit Manipulation Instructions

Logicals
NOT “Nat” byte or word
AND “And” byte or word
OR “Inclusive or" byte or word
XOR “Exclusive or” byte or word
TEST “Test" byte or word
Shifts
SHL/SAL Shift logical/arithmetic left byte or word
SHR Shift logical right byte or word
SAR Shift arithmetic right byte or word
Rotates
ROL Rotate left byte or word
ROR Rotate right byte or word
RCL Rotate through carry left byte or word
RCR Rotate through carry right byte or word

20

EC 8691-Microprocessor and Microcontroller Unit-1
(1) Logical Instructions : AND, OR, XOR, NOT, TEST

(i1) Shift Instructions : SHL, SAL, SHR, SAR
(ii1) Rotate Instructions : ROL, ROR, RCL, RCR
1. AND
AND destination, source
This (AND) instruction performs the logical "AND" of the source operand with the destination operand and
the result is stored in destination.
(DEST) « (DEST) "AND" (SRC)
Example:
AND BL, CL
AND AL, 0011 1100 B
2. OR
OR destination, source
This (OR) instruction performs the logical "OR" of the source operand with the destination operand and
the result is stored in destination.
(DEST) « (DEST) "OR" (SRC)
Example:
OR AX, BX
OR AL, OFH
3. XOR
XOR destination, source
This (Exclusive OR) instruction performs the logical "XOR" of the two operands and the result is stored
in destination operand.
(DEST) < (DEST) "XOR"(SRC)
4.NOT
NOT destination
This (NOT) instruction inverts the bits (forms the 1's complement) of the byte or word.
(DEST) « 1's complement of (DEST)
Example:
NOT AX
5. TEST

TEST destination, source

21

EC 8691-Microprocessor and Microcontroller Unit-1
This (TEST) instruction performs the logical "AND" of the two operands and updates the flags but does

not store the result.

(DEST) "AND" (SRC)

Example:
TEST AL, I5H
TEST SI, DI

6. SHL

SHL destination, count
This (Shift Logical Left) instruction performs the shift operation. The number of bits to be shifted is

represented by a variable count, either 1 or the number contained in the CL register.

Example
SHL AL, 1
Before execution:
CF AL
0 1 1 0 0 1 1 0 0

After execution:
CF AL
1 1 0 0 1 1 0 0 0

7. SAL
SAL destination, count
SAL (Shift Arithmetic Left) and SHL (Shift Logical Left) instructions perform the same operation and
are physically the same instruction.
Example
SAL AL, CL
SAL AL, 1
8. SHR

SHR destination, count

22

EC 8691-Microprocessor and Microcontroller Unit-1
This (Shift Logical Right) instruction shifts the bits in the destination operand to the right by the number

of bits specified by the count operand, either 1 or the number contained in the CL register.
Example
SHR BL, 1
SHR BL, CL

CF BL
23l 25 - -

The SHR instruction may be used to divide a number by 2. For example, we can divide 32 by 2,
MOV BL, 32 ; 0010 0000 (32)

SHR BL,1 ; 0001 0000 (16)
SHR BL,1 ; 0000 1000 (8)
SHR BL,1 ; 0000 0100 (4)
SHR BL,I ; 0000 0010 (2)

9. SAR

SAR destination, count
This (Shift Arithmetic Right) instruction shifts the bits in the destination operand to the right by the
number of bits specified in the count operand. Bits equal to the original high-order (sign) bits are shifted in

on the left, thereby preserving the sign of the original value.

CF |
MSBl— — — 3

Example :
SARBL, 1

Before execution:
CF BL
0 1 1 0 0 1 1 0 0

After execution:
CF BL

23

EC 8691-Microprocessor and Microcontroller

Unit-1

0 1 1 1 0 0 1

10. ROL

ROL destination, count

This (Rotate Left) instruction rotates the bits in the byte/word destination operand to the left by the

number of bits specified in the count operand.

CF

Example:
ROL AL, 1

Before execution:

CF AL

0 1 1 0 0 1 1 0 0

After execution:

CF AL

1 1 0 0 1 1 0 0 1
11. ROR

ROR destination, count

This (Rotate Right) instruction rotates the bits in the byte/word destination operand to the right by the

number of bits specified in the count operand.

CF

Example:

ROR AL, 1

24

EC 8691-Microprocessor and Microcontroller Unit-1
Before execution:

CF AL
0 1 1 0 0 1 1 0 0

After execution:

CF AL
0 0 1 1 0 0 1 1 0
12. RCL

RCL destination, count
This (Rotate through Carry Left) instruction rotates the contents left through carry by the specified

number of bits in count operand.

CF

It

Example:
RCL AL, 1

Before execution:
CF AL
1 0 0 0 0 1 1 1 1

After execution:
CF AL
0 0 0 0 1 1 1 1 1

13.RCR
RCR destination, count
This (Rotate through Carry Right) instruction rotates the contents right through carry by the specified

number of bits in the count operand.

25

EC 8691-Microprocessor and Microcontroller

CF
r - - = ") :
Example:
RCR AL, 1
Before execution:
CF AL
1 1 1 0 0 0

After execution:

CF

AL

0 1

String Instructions

REP Repeat

REPE/REPZ Repeat while equalizero
REPNE/REPNZ Repeat while not equalinot zero
MOVSBIMOVSW Move byte stringfword string
MOVS Move byte or word string
INS Input byte or word string
OUTS Output byte or word string
CMPS Compare byte or word string
SCAS Scan byte or word string
LODS Load byte or word string
STOS Store byte or word string

1. REP

Unit-1

EC 8691-Microprocessor and Microcontroller Unit-1
REP MOVS destination, Source

This (Repeat) instruction converts any string primitive instruction into a re-executing loop. It specifies a
termination condition which causes the string primitive instruction to continue executing until the
termination condition is met. REP is used in conjunction with the MOVS and STOS instructions.

Example:
REP MOVS CL, AL

The other Repeat instructions are:

REPE - Repeat while Equal
REPZ - Repeat while zero
REPNE - Repeat while Not Equal
REPNZ - Repeat while Not Zero

The above instructions are used with the CMPS and SCAS instructions.
Example:
REPE CMPS destination, source
REPNE SCAS destination
2.MOVS
MOVS destination - string, source-string
This (Move String) instruction transfers a byte/word from the source string (addressed by SI) to the
destination string (addressed by DI) and updates SI and DI to point to the next string element.
(DEST) « (SRC)
Example:
MOVS Buffer 1, Buffer 2
3. CMPS
CMPS destination-string, source-string
This (Compare String) instruction subtracts the destination byte/word (addressed by
DI) from the source byte/word (addressed by SI). It affects the flags but does not affect the
operands. -
Example:
CMPS Buffer 1, Buffer 2
4. SCAS
SCAS destination-string

e This (Scan String) instruction subtracts the destination string element (addressed by DI) from the

27

EC 8691-Microprocessor and Microcontroller Unit-1
contents of AL or AX and updates the flags.

e ‘The contents of destination string or accumulator are not altered.
e After each operation, DI is updated to point to the next string element
Example:
SCAS Bufter
5. LODS
LODS source-string
This (Load String) instruction transfers the byte/word string element addressed by SI to register AL or
AX and updates SI to point to the next element in the string.
(DEST)«—(SRC)
Example:
LODSB name
LODSW name
6. STOS
STOS destination - string
This (Store String) instruction transfers a byte/word from register AL or AX to the string element
addressed by DI and updates DI to point to the next location in the string.
(DEST) « (SRC)
Example: STOS display
Program Transfer Instructions
Unconditional instructions : CALL, RET, JMP
Conditional instructions : JC, JZ, JA

Iteration control instructions :LOOP, JICXZ
Interrupt instructions :INT, INTO, IRET
1. CALL

e CALL procedure - name

e This (CALL) instruction is used to transfer execution to a subprogram or procedure.

e RET (return) instruction is used to go back to the main program.

e There are two basic types of CALL : NEAR and FAR

Intra-Segment CALL:

e A NEAR-CALL is a call to a procedure which is in the same code segment as the CALL instruction.

e When 8086 executes a NEAR-CALL instruction, it decrements the stack pointer (SP) by 2 and copies

28

EC 8691-Microprocessor and Microcontroller Unit-1
the offset of the next instruction after the CALL on the stack.

e Itloads IP with the offset of the first instruction of the procedure in same segment.
e This NEAR-CALL is known as Intra-segment CALL.
Inter-Segment CALL:
e A FAR-CALL is a call to a procedure which is in a different segment from that which contains the
CALL instruction.
e When 8086 executes a FAR-CALL, it decrements the SP by 2 and copies the contents of the CS register
to the stack.
e [t then decrements SP by 2 again and copies the offset of the instruction after the CALL to the stack.
e Finally it loads CS with the segment base of the segment which contains the procedure and IP with the
offset of the first instruction of the procedure in that segment.
e This FAR-CALL is known as Inter-segment CALL.
Example:
CALL NEAR
CALL AX
2.RET
This (Return) instruction will return execution from a procedure to the next instruction after the CALL
instruction in the main program.
If intra-segment, IP is popped off the stack; SP =SP+2
If inter-segment, CS is popped off the stack; SP = SP+2
IP is popped off the stack; SP=SP+2
If optional POP value is used, then SP= SP + value.
Example:
RET
RET 6
3. JMP
JMP target
This (Jump) instruction unconditionally transfers control to the target location. The target operand may
be obtained from the instruction itself (direct JMP) or from memory or a register referenced by the
instruction (indirect JMP).
A NEAR-JMP (Intra-segment) is a jump where destination location is in the same code segment. In this

case only IP is changed.

29

EC 8691-Microprocessor and Microcontroller
IP =IP + signed displacement

Unit-1

A FAR-JMP (Inter-segment) is a jump where destination location is from a different segment. In this case

both IP and CS are changes as specified in the destination.

Example:

JMPBX

Conditional JMP

Instruction Operation

JC Jump if carry

INC Jump if no carry

Iz Jump if Zero

INZ Jump if not zero

JS Jump if sign or negative

INS Jump if positive

JP/JPE Jump if parity/parity even

JNP/JPO Jump if not parity/odd parity

JO Jump if overflow

INO Jump if no overflow

JA/JNBE Jump if above/not below or equal
JAE/INB Jump if above or equal/not below
JB/INAE Jump if below/not above or equal
JBE/INA Jump if below or equal / not above
JG/INLE Jump if greater/not less than nor equal
JGE/INL Jump if greater or equal/not less than
JL/INGE Jump if less/neither greater nor equal
JLE/ING Jump if less than or equal / not greater
5.LOOP

LOOP label

This (Loop if CX not zero) instruction decrements CX by 1 and transfers control to the target operand if

CX is not zero. Otherwise the instruction following LOOP is executed.

fCX#0,CX=CX-1

30

EC 8691-Microprocessor and Microcontroller Unit-1
[P =IP + displacement

If CX=0, then the next sequential instruction is executed.
Example:

LOOP again
6. LOOPE/LOOPZ

LOOPE/LOOQOPZ label

These (LOOP while Equal/Loop while Zero) are different mnemonics for the same
instruction.

If CX#0, CX=CX-1 and control is transferred '.o the target operand

If CX = 0, then next sequential instruction is executed.
Example:

LOOPE again
7. LOOPNE/LOOPNZ

LOOPNE Label

These (LOOP while Not Equal/LOOP while Not Zero) are different mnemonics for the same
instruction. CX is decremented by 1 and control is transferred to target operand if CX is not zero and if
ZF=0; otherwise the next sequential instruction is executed.

Example:

LOOPNE again
8. JCXZ

JCXZ Label

This (Jump if CX register Zero) instruction transfers control to the target operand if CX=0. It is useful
at the beginning of a loop to bypass the loop if CX=0.

Example:

JCXZ again
9. INT

INT interrupt type (0-255)

This (Interrupt) instruction activates the interrupt procedure specified by the interrupt-type number (0-
255). The address of the interrupt pointer is calculated by multiplying the interrupt-type number by 4.

Example :

INT 7, INT 180

31

EC 8691-Microprocessor and Microcontroller Unit-1
10.INTO

This (Interrupt on Overflow) instruction generates a software interrupt if the overflow flag is set.
Otherwise, control proceeds to the following instruction without activating an interrupt procedure.
11.IRET

This (Interrupt on Return) instruction transfers control back to the point of interruption by popping IP,
CS and the flags from the stack.

IRET is used to exit any interrupt procedure, whether activated by hardware or software.
Processor Control Instructions
1. HLT

This (Halt) instruction will cause the 8086 to stop fetching and executing instructions. The 8086 will enter
a halt state. The ways to get the processor out of halt state are with (i) an interrupt signal on the INTR pin.
(11) An interrupt signal on the NMI pin, (ii1) a reset signal on the RESET pin.
2. WAIT

This (Wait) instruction causes the 8086 to enter the wait state while its test line is not active.

.LOCK

w

e The LOCK prefix allow 8086 to make sure that another processor does not take control of the system
bus while it is in the middle of a critical instruction which uses the system bus.

e The LOCK prefix is put in front of the critical instruction.

e When an instruction with a LOCK prefix executes, the 8086 will assert its bus lock signal output. This
signal is connected to an external bus controller device which then prevents any other processor from
taking over the system bus.

4. ESC

v This (Escape) instruction provides a mechanism by which other coprocessors may receive their
instructions from the 8086 instruction stream and make use of the 8086 addressing modes.

v The 8086 does a no operation (NOP) for the ESC instruction other than to access a memory
operand and place it on the bus.

5. NOP
This (No operation) instruction causes the CPU to do nothing. NOP does not affect any flags.

32

EC 8691-Microprocessor and Microcontroller Unit-1
6. Flag operations

Instruction Operation

CLC Clear the carry flag (CF) STD Set the direction flag (DF)
CMC ' Complement the carry flag (CF) CLI Clear the interrupt flag (IF)
STC Set the carry flag (CF) STI Set the interrupt flag (IF)
CLD Clear the direction flag (DF)

5. Assembler directives
AUQ: Explain the assembler directives in 8086 Microprocessor. (Dec-2006,11,12,
May2007,08,10,11,13, Dec 2016)

e An assembler is a program used to convert an assembly language program into the equivalent
machine code modules which may further converted into executable codes.
Some directives such as ORG, EQU, DB, DW, etc which are common in different assemblers were

also described. Though a representative set of directives for the 8086 assembler is presented, it is possible
that some assemblers have a few additional directives. On the other hand, some of the directives
presented here may not be present or may be present in different forms.
Directives for Constant and Variable Definition
An Intel 8086 assembly program uses different types of constants like binary, decimal, octal and
hexadecimal. These can be represented in the program using different suffixes like B (for binary), D (for
decimal), O (for octal) and H (for hexadecimal) to the constant. For example:
* 10H is a hexadecimal number (equivalent to decimal 16).
» 270 is an octal number (equivalent to decimal 23).
* 10100B is a binary number.
A number of directives are used to define and store different kinds of constants.
The DB (Define Byte), DW (Define Word), DDW (Define Double Word) are described in Chapter
The 8086 assembler uses DD as directive for double word. Some of the 8086 assemblers also provide the
following additional directives.
» DQ : Define Quadword
» DT : Define Ten Bytes
In addition, these directives can be used to store strings and arrays. For example:
« NAME DB "NEHA SHIKHA". The ASCII codes of alphanumeric characters specified
within double quotes are stored.

33

EC6504-Microprocessor and Microcontroller Unit-1
« NUM DB S5, 6, 10, 12, 7. The array of five numbers NUM is declared and the numbers 5, 6,

10, 12 and 7 are stored.
The directives DUP and EQU are used to store strings and arrays.
DUP
Using the DUP directive, several locations may be initialized and the values may be put in those
locations. The format is as follows. Name Type Num DUP (value)
For example: TEMP DB 20 DUP (5)
The above directive defines an array of 20 bytes in memory and each location is initialized to 5. The
array is named TEMP.
EQU
The EQU directive may be used to define a data name with immediate value or another data name. It
can also be used to equate a name to a string. For example:
NUMB EQU 20H
NAME EQU “RASHMI”
Program Location Control Directives
The directives used for program location control in the 8086 assembler are (ORG, EVEN, ALIGN
and LABEL.
ORG
The ORG directive is used to set the location counter to a particular value. For example:
» ORG 2375H
The location counter is set to 2375H. If it occurs in data segment, the next data storage will start
at 2375H. If it is in code segment, the next instruction will start at 2375H.
EVEN
Using EVEN directive, the next data item or label is made to start at the even address boundary. The
assembler, on encountering EVEN directive, will advance the location counter to even address boundary.
For example:
» EVEN TABLE DW 20 DUP (0)
This statement declares an array named TABLE of 20 words starting from the even address. Each

word is initialized to zero.

34

EC6504-Microprocessor and Microcontroller Unit-1
ALIGN number

This directive will force the assembler to align the next segment to an address that is divisible by 2,

4, 8 or 16. The unused bytes are filled with 0 for data and NOP instruction for code. For example:
» ALIGN 2

It will force the next segment to the next even address.
LENGTH

It is an operator which is used to tell the assembler to determine the number of elements in a data
item, such as string or array. For example:
» MOV CX, LENGTH ARRAY

This statement will move the length of the array to the CX register.
OFFSET

This operator is used to determine through the assembler, the offset of a data item from the start of
the segment containing it. For example:
» MOV AX, OFFSET FACT

This statement will place in the AX register the offset of the variable FACT from the start of the
segment.
LABEL

The LABEL directive is used to assign a name to the current value in the location counter. The
location counter is used by the assembler to keep track of the current location. The value in the location

counter denotes the distance of the current location from the start of the segment.

Segment Declaration Directives
These directives help in declaring various segments with specific names. The start and the end of
segments may also be specified using this directive. The directives for segment declaration include
SEGMENT, ENDS, ASSUME, GROUP, CODE, DATA, STACK etc.
SEGMENT and ENDS
The SEGMENT and ENDS directives signify the start and end of a segment.
INST SEGMENT
ASSUME CS: FNST, DS: DATAW

35

EC6504-Microprocessor and Microcontroller Unit-1

INST ENDS ASSUME

This directive is used to assign logical segment to physical segment at any time. It tells the
assembler as to what addresses will be in segment registers at the time of execution. For example:
» ASSUME CS: CODE, DS: DATA, SS: STACK

This directive tells the assembler that the CS register will store the address of the segment whose
name is CODE, and so on.
.CODE (Name)

This code directive is the shortcut used in the definition of code segments. The name is optional and
is specified if there is more than one code segment in the program.
.DATA and .STACK

Similar to .CODE, the .DATA and .STACK directives are shortcuts in the definition of data segment
and stack segment, respectively.
GROUP

This directive is used to tell the assembler to group all the segments in one logical group segment.
This allows the contents of all the segments to be accessed from the same segment base. For example:
» PROG GROUP CODE, DATA

The above statement will group the two segments CODE and DATA into one segment named
PROG. Each segment must be declared using ASSUME statement as in the following statement.
» ASSUME CS: PROG DS: PROG

Procedure and Macro-related Directives

The directives in this group relate to the declaration of procedures and macros along with the
variables contained in them. The directives include PROC, ENDP, PUBLIC, MACRO,ENDM and
EXTRN.
PROC and ENDP

The PROC directive is used to define the procedures. The procedure name is a must and it must
follow the naming convention of the assembler. Along with the name of the procedure, the field NEAR
or FAR also needs to be specified.

The ENDP directive is used to mark the end of the procedure. Some examples are given below.

36

EC6504-Microprocessor and Microcontroller Unit-1
FUNCT PROC FAR

ENDP
FACT PROC NEAR

ENDP
The first procedure FUNCT is in a segment which is different from where it is called. The second
procedure FACT is in the same segment where it is called. All the statements of the procedure are

between PROC and ENDP directives.

PUBLIC
It is very much possible that a variable is defined in one module, but is used in other modules. In
order to facilitate the linking, such variables are declared public, using the PUBLIC directive in the
module where they are defined. For example:
» PUBLIC PX, PY, PZ
MACRO and ENDM
The MACRO directive is used to define macros in the program. The ENDM directive defines the
end of MACRO
Other Directives
These directives are of general nature, or they relate to more than one group described earlier. The
directives described include PTR, PAGE, TITLE, NAME and END.
PTR
The PTR is an operator used in instructions to assign a specific type to a variable or a label. The
PTR operator can also be used to override the declared type of variable. Following is an example of the
use of PTR directive.
» ARRAY DW 0125H, 1630H, 9275H ...
In the above array of words, suppose we wish to move a byte from the array, we may then simply insert
the PTR operator as follows
» MOV AL, BYTE PTR ARRAY

37

EC6504-Microprocessor and Microcontroller Unit-1
PAGE

This directive is used for listing of the assembled program. At the start of the program, the
directive is placed to specify the maximum number of lines on a page and the maximum number of
characters in a line to be placed for listing. An example is given below.

» PAGE 60, 120

The above example specifies that 60 lines are to be listed on a page with a maximum of 120 characters in
each line.

TITLE

This directive is also used for the listing of the program. The title declared in this directive defines
the title of the program and is listed in line 2 of each page of program listing. The maximum number of
characters allowed is 60. For example:

» TITLE PROGRAM TO FIND SQUARE ROOT

NAME
The NAME directive is used to assign a specific name to each module, when the program consists of a
number of modules. This helps in understanding the program logic.
END

This is the last statement of the program and it specifies the end of the program to the assembler.
It must be noted that not all of the above directives are used in all programs. User may deploy them

depending on the need of the program logic.

6. ASSEMBLY LANGUAGE PROGRAMS:

1. 16-BIT ADDITION USING 8086 2. 16-BIT SUBTRACTION USING 8086
MOV DX,0000 MOV DX,0000
MOV AX,[2000] MOV AX,[2000]
MOV BX,[2002] MOV BX,[2002]
ADD AX,BX SUB AX,BX
INC L1 INCLI
INC DX INC DX
L1 MOV[2004],AX L1 MOV[2004],AX
MOV[2006],DX MOV[2006],DX
HLT HLT

38

EC6504-Microprocessor and Microcontroller
3. 16 BIT MULTIPLICATION USING

8086
MOV DX,0000
MOV SL,2000
MOV AX,SI
MOV CX,[2002]
MUL CX
MOV SL,2100
MOV [SI],AX
MOV [2102],DX
HLT

5. 16 BIT ASCENDING ORDER USING
8086

MOV AX,0000H
START MOV CX,0005H

MOV DX,0005H

MOV SI,2000H
LABEL MOV AX,[SI]

CMP AX,[SI+2]

JC LOOP

XCHG AX,[SI+2]

XCHG AX,[SI]
LOOP ADD SI,0002

LOOP LABEL

DEC DX

JNZ START

HLT

39

Unit-1
4. 16 BIT DIVISION USING 8086

MOV DX,0000
MOV SL,2000
MOV AX,SI
MOV CX,[2002]
DIV CX

MOV SL,2100
MOV [SI],AX
MOV [2102],DX
HLT

6. 16-BIT DESCENDING
USING 8086
MOV AX,0000
START MOV CX,0005
MOV DX,0005
MOV SI,2000
LABEL MOV AX,[SI]
CMP AX,[SI+2]
JNC LOOP
XCHG AX, [SI+2]
XCHG AX, [ST]
ADD SI, 0002
LOOP LABEL
DEC DX
JNZ START
HLT

ORDER

LOOP

EC6504-Microprocessor and Microcontroller
7. LARGEST NUMBER IN AN ARRAY

USING 8086
MOV CX,0004
DEC CX
MOV SI,2000
MOV AX,[SI]
LABEL CMP AX,[SI+2]
JNC LOOP1
MOV AX,[SI+2]
LOOP 1 ADD SI,0002
LOOP LABEL
MOV[2500],AX
HLT
9. Write a program based on 8086
instruction set to compute the average of
‘n” numberof bytes stored in the

memory.(Nov/ Dec 2012)

MOV SI, 2000H
MOV DI, 3000H
MOV CL, [SI]
INC SI

MOV AX, 0000H
ADD AL,[S]]

INC STEP2
INC AH
INC SI

LOOP STEPI
MOV [DIJAX
HLT

Unit-1
8. SMALLEST NUMBER IN AN ARRAY

USING 8086
MOV CX,0004
DEC CX
MOV SI1,2000
MOV AX,[SI]
LABEL CMP AX,[SI+2]
JC LOOPI
MOV AX,[SI+2]
LOOP 1 ADD SI,0002
LOOP LABEL
MOV[2500],AX
HLT
10. Write an 8086 ALP to sort the array of
elements in ascending order. (Apr/ May
2011, May / June 2013)
MOV SI, 2000H
MOV CL,[S]]
DEC CL
STEP1 MOV SI,2000H
MOV CH, [SI]
DEC CH
INC SI
STEP2 MOV AL, [SI]
INC SI
CMP AL, [SI]
JC STEP3
XCHG AL, [SI]
XCHG AL,[SI-1]
DEC CH
JINZ STEP2
STEP3 DEC CL
JNZ STEP1
HLT

40

EC6504-Microprocessor and Microcontroller Unit-1
11. Write an 8086 ALP to find the largest

element in array elements. (Apr/ May 2011)

MOV SI1.2000H 12. Write an 8086 program to convert BCD
MOV DI, 3000H data to binary data. (Nov/ Dec 2010)
MOV CL, [SI] MOV BX,2000H
INC SI MOV AL,[BX]
MOV AL, [SI] MOV DL,AL
DEC CL AND DL,0FH
STEPI1: INC SI AND AL,FOH
MOV BL, [SI] MOV CL4
CMP AL, BL ROA AL,CL
JNC STEP2: MOV DH,0AH
MOV AL, BL MUL DH
STEP2: DEC CL ADD AL,DL
JNZ STEPI: MOV [BX+1],AL
MOV [DI],AL HLT
HLT

7. Linking And Relocation
Explain linking and relocation concepts in 8086 Processor.

The DOS linking program links the different object modules of a source program and function
library routines to generate an integrated executable code of the source program.

The main input to the linker is the .OBJ file that contains the object modules of the source
programs.

The linker program is invoked using the following options.

C> LINK

or

C>LINK MS.OBJ

The output of the link program is an executable file with the entered filename and .EXE
extension. This executable filename can further be entered at the DOS prompt to execute the file.

The linked file in binary for run on a computer is commonly known as executable file or simply
.exe.” file. After linking, there has to be re-allocation of the sequences of placing the codes before
actually placement of the codes in the memory.

The loader program performs the task of reallocating the codes after finding the physical RAM
addresses available at a given instant. The DOS linking program links the different object modules of a
source program and function library routines to generate an integrated executable code of the source
program.

<

41

EC6504-Microprocessor and Microcontroller Unit-1

The loader program performs the task of reallocating the codes after finding the physical RAM
addresses available at a given instant. The loader is a part of the operating system and places codes into
the memory after reading the ‘.exe’ file.

A program called locator reallocates the linked file and creates a file for permanent location of
codes in a standard format.

Segment combination

In addition to the linker commands, the assembler provides a means of regulating the way
segments in different object modules are organized by the linker.

Segments with same name are joined together by using the modifiers attached to the
SEGMENT directives. SEGMENT directive may have the form Segment name SEGMENT
Combination-type where the combine-type indicates how the segment is to be located within the load
module.

Segments that have different names cannot be combined and segments with the same name but no
combine-type will cause a linker error. The possible combine-types are:
PUBLIC - If the segments in different modules have the same name and combine type PUBLIC, then
they are concatenated into a single element in the load module. The ordering in the concatenation is
specified by the linker command.
COMMON - If the segments in different object modules have the same name and the combine-type is
COMMON, then they are overlaid so that they have the same starting address. The length of the common
segment is that of the longest segment being overlaid.
STACK - If segments in different object modules have the same name and the combine type STACK,
then they become one segment whose length is the sum of the lengths of the individually specified
segments. In effect, they are combined to form one large stack.
AT — The AT combine-type is followed by an expression that evaluates to a constant which is to be the
segment address. It allows the user to specify the exact location of the segment in memory.
MEMORY - This combine-type causes the segment to be placed at the last of the load module. If more
than one segment with the MEMORY combine-type is being linked, only the first one will be treated as
having the MEMORY combine type; the others will be overlaid as if they had COMMON combine-type.

Source module 1

DATA SEGMENT COMMON
DATA ENDS

CODE SEGMENT PUBLIC
CODE ENDS

Source module 2

DATA SEGMENT COMMON
DATA ENDS

CODE SEGMENT PUBLIC
CODE ENDS

42

EC6504-Microprocessor and Microcontroller Unit-1
Access to External Identifiers

If an identifier is defined in an object module, then it is said to be a local (or internal) identifier
relative to the module. If it is not defined in the module but is defined in one of the other modules being
linked, then it is referred to as an external (or global) identifier relative to the module.

In order to permit other object modules to reference some of the identifiers in a given module, the
given module must include a list of the identifiers to which it will allow access. Therefore, each module
in multi-module programs may contain two lists, one containing the external identifiers that can be
referred to by other modules.

Two lists are implemented by the EXTRN and PUBLIC directives, which have the forms:

EXTRN Identifier: Type..., Identifier: Type
and
PUBLIC Identifier,.. ., Identifier

where the identifiers are the variables and labels being declared or as being available to other modules.
8. Stacks

How stacks are accessed in 8086 processor? Explain briefly.(Dec-2007)

The stack is a block of memory that may be used for temporarily storing the contents of the
registers inside the CPU. It is a top-down data structure whose elements are accessed using the stack
pointer (SP) which gets decremented by two as we store a data word into the stack and gets incremented
by two as we retrieve a data word from the stack back to the CPU register.

The stack is essentially Last-In-First-Out (LIFO) data segment. This means that the data which is
pushed into the stack last will be on top of stack and will be popped off the stack first.

The stack pointer is a 16-bit register that contains the offset address of the memory location in the
stack segment. T Stack Segment register (SS) contains the base address of the stack segment in the
memory.

The Stack Segment register (SS) and Stack pointer register (SP) together address the stacktop as
explained below:

5§ /> 5000H
SP ——> 2050H

If the stack top points to a memory location 52050H, it means that the location 52050H is already
occupied with the previously pushed data. The next 16 bit push operation will decrement the stack
pointer by two, so that it will point to the new stack-top 5204EH and the decremented contents of SP will
be 204EH. This location will now be occupied by the recently pushed data.

Thus for a selected value of SS, the maximum value of SP=FFFFH and the segment can have
maximum of 64K locations. If the SP starts with an initial value of FFFFH, it will be decremented by two
whenever a 16-bit data is pushed onto the stack. After successive push operations, when the stack pointer
contains 0000H, any attempt to further push the data to the stack will result in stack overflow.

After a procedure is called using the CALL instruction, the IP is incremented to the next
instruction. Then the contents of IP, CS and flag register are pushed automatically to the stack. The
control is then transferred to the specified address in the CALL instruction i.e. starting address of the
procedure. Then the procedure is executed.

43

EC6504-Microprocessor and Microcontroller Unit-1

Physical address
50000H

Allowed Stack memory
arca

SP 2035011 52050H

Stack top
S5 S000H Physical address
Fig. Stack-top address calculation

9. PROCEDURES & MACROS

Macros: AUQ: Define macro. Explain how macros are constructed in ASM-86 with example.
(Dec-2010, May2006,10,11)

Macros look like procedures, but they exist only until our code is compiled, after compilation all
macros are replaced with real instructions. If we declared a macro and never used it in out code,

complier will simply ignore it.
Macro definition :

name MACRO [parameters,..]

<statements>
ENDM
Example:
My Macro MACRO P1,P2,P3
MOV AX, P1
MOV BX, P2
MOV CX, P3
ENDM
Advantages of macros
o Repeated small groups of instructions replaced by one macro
o Errors in macros are fixed only once, in the definition.
o Duplication of effort is reduced.

44

EC6504-Microprocessor and Microcontroller Unit-1

J In effect, new higher level instructions can be created
o Programming is made easier, less error prone
. Generally quicker in execute than subroutines.

Disadvantages of macros
In large programs, produce greater code size than procedures.

When to use Macros?

o To replaces small groups of instruction not worthy of subroutines.

. To create a higher instruction set for specific applications.

o To create compatibility with other computers,

J To replace code portions which are repeated often throughout the program.
Procedure (PROC)

This directive marks the start and end of a procedure block called label, the statements in the block can be
called with they CALL instruction.

The directive PROC indicated the states of a procedure. The type of the procedure FAR of NEAR is to be
specified after the directive, the type NEAR is used to call a procedure with is within the programmed
module. The type FAT is used to call a procedure from some other program module. The PROC directive

is used with ENDP directive to enclose a procedure.

PROC definition :
label PROC [[near /far]]
<Procedure instructions>

Label ENDP

Example:

WEST PROC FAR

WEST ENDP
A procedure is a set of instructions that compute some value or take some action (such as printing or

reading a character value). The definition of a procedure is very similar to the definition of an algorithm.

45

EC6504-Microprocessor and Microcontroller Unit-1
A procedure is a set of rules to follow which, if they conclude, produce some results. An algorithm is also

such a sequence, but an algorithm is guaranteed to terminate whereas a procedure offers no such
guarantee.

Nested Procedures

The nest procedure is one procedure definition may be totally enclosed inside another. The following is
an example of such a pair of procedures:

OUTSIDEPROC PROC NEAR

JMP ENDOFOUTSIDE

INSIDEPROCPROC NEAR

MOC AX,0

RET

INSIDEPROC ENDP

ENDOFOUTSIDE: CALL INSIDEPROC

MOV BX, 0

RET

OUTSIDEPROC ENDP

Whenever we nest one procedure within another, it must be totally contained within the nesting
procedure. That is the PROC and ENDP statements for the nested procedure must lie between the PROC
and ENDP directives of the outside, nesting procedure. The following is not legal.

OUTSIDEPROC PROC NEAR

*
*
*
INSIDEPROCPROC NEAR
*
*
*
OUTSIDEPROC ENDF
*

*

*INSIDEPROC ENDP
THE OUTISDE proc AND Inside PROC procedures overlap, they are not nested. If we attempt to create
a set of procedures like this MASM would report a “block nesting error.

46

EC6504-Microprocessor and Microcontroller Unit-1

/ Outside Proc Procedure

] —

T Inside Proc Procedure

The only form acceptable to MASM

4——— Outside Proc Procedure

—L

Inside Proc Procedure

Besides fitting inside an enclosing procedure, PROC/ENDP groups must fit entirely within a segment.
The ENDP directive must appear before the SEG ends statement since MyProc begins inside SEG.

Therefore, procedures within segments must always take the form.

‘_

Outside Proc Procedure

—1

Inside Proc Procedure

Not only can we nest procedures inside other procedures and segments, but we can nest segments inside
other procedures and segments as well.

Difference between Macros and Procedures

1. To use a procedure use CALL instruction is needed. For example: CALL MyProc.

To use a macro, just type its name. For example, my Macro.

2. Procedure is located at some address in memory, and if use the same procedure 100 times, the
CPU will transfer control to this part of the memory. The control will be return back to the program by
RET Instruction. The stack is used to keep the return address. The CALL instruction takes about 3 bytes,
so the size of the output executable file grows very insignificantly, no matter how many time the
procedure is used.

Macro is expanded directly in program’s code. So if use the same macro 100 times, the complier expands
the macro 100 times, making the output executable file larger and larger, each time all instruction of a

macro are inserted.

47

EC6504-Microprocessor and Microcontroller Unit-1
3. Use stack or any general purpose registers to pass parameters to procedure.

To pass parameters to macro, just type them after the macro name. For example :My Macro ,1.2.3

4. To mark the end of the macro ENDM directive is enough.
To mark the end of the procedure, type the name of the procedure before the ENDP directive.

Differentiate procedures and macros.

The difference between procedures and macros are given in the Table.

S.No. | PROCEDURES MACROS

1 To wuse procedure use CALL and RET | To use a macro, just type its name

instructions are needed

2 It occupies less memory It occupies more memory

3 Stack is used Stack is not used

4 To mark the end of the procedure, type the name | To mark the end of the macro ENDM
of the procedure before the ENDP directive. directive is enough

5 Overhead time is required to call the procedure | No overhead time during the execution.

and return to the calling program

10. INTERRUPTS AND INTERRUPT SERVICE ROUTINES
AUQ: What are the interrupts in 8086? Explain interrupt related service routines.(Dec-2007,08,12,
May-2007,08,11,12,13,15, May 2016, May 2017)

Interrupts:
A signal to the processor to halt its current operation and immediately transfer control to an
interrupt service routine is called as interrupt. Interrupts are triggered either by hardware as when the

keyboard detects a key press, or by software, as when a program executes the INT instruction.

J Interrupts are triggered by different hardware, these are called hardware interrupts.
J To make a software interrupt there is an INT instruction, it has very simple syntax : INT
Value.

Where value can be a number between 0 to 255 (or 00 to FF h).
Interrupt Service Routings (ISRs)

IST is a routing that receives processor control when a specific interrupt occurs.

48

EC6504-Microprocessor and Microcontroller Unit-1
The 8086 will directly call the service routing for 256 vectored interrupts without any software

processing. This is in contrast to non vectored interrupts that transfer control directly to a single interrupt
service routine, regardless of the interrupt source.

The 8086 provides a 256 entry interrupt vector table beginning at address 0:0 in memory. This is a 1K
table containing 256 4-byte entries. Each entry in the table contains a segmented address that points at the
interrupt service routing in memory. Generally, interrupts referred by their index into this table, so
interrupt zero’s address (vector) is at memory location 0:0 interrupt one’s vector is at address 0:4,
interrupt two’s vector is at address 0:8, etc.

Interrupt vector table:

It is a table maintained by the operating system. It contains addresses (vectors) of current interrupt
service routine. When an interrupt occurs, the CPU branches to the address in the table that corresponds
to the interrupt’s number.

When an interrupt occurs, regardless of source, the 8086 does the following :

1. The CPU pushes the flags register onto the stack.
2. The CPU pushes a far return address (segment: offset) onto the stack, segment value first.
3. The CPU determines the cause of the interrupt (i.e, the interrupt number) and fetches the

four byte interrupt vector from address 0 : vector x 4 (0:0, 0;4, 0:8 etc)

4. The CPU transfers control to the routine specific by the interrupt vector table entry.

After the completion of these steps, the interrupt service routine takes control. When the interrupt service
routine wants to return control, it must execute an IRET (interrupt return) instruction. The interrupt return

pops the far return address and the flags of the stack.

Available Interrupt 3FFH Type 255 pointer
pointers (224) (Available)
080H Type 32 pointer
(Available)
Reserved Interrupts 07FH Type 31 pointer
(27)
(Reserved)
Type 5 pointer
(Reserved)
Dedicated Interrupt Type 4 pointer
Pointers(6) 014H overflow

49

EC6504-Microprocessor and Microcontroller Unit-1

010h | Type 3 pointer
1Byte INT instruction

00CH Type 2 Pointer
NonMaskable

008H TYPE 1 Pointer

Single step
CS Base address 004H TYPE 0 Pointer
IP offset 000H Divide by zero

Types of Interrupts :

1. Hardware Interrupt — External used INTR and NMI

2. Software Interrupt — Internal — from INT or INTO

3. Processor Interrupt — Traps and 10 Software Interrupts

External — generated outside the CPU by other hardware, (INTR, NMI)

Internal — generated within CPU as a result of an instruction of operation (INT, INTO, Divide error and

single step)

Programmable
Interrupt Controller

NMI Requesting

Device +—IR,
— IR,
INAAL —R,
8086 CPU 4 —IR,
INTR Intel R
Interrupt Logic =l 8259A "
T T T T — IR,
Nt | iNTo Divide| [Single R
Error | | Step —IR,

Software Traps

Dedicated Interrupts:
(1) Divide Error Interrupt (Type 0)

This interrupt occurs automatically following the execution of DIV or IDIV instruction when the
quotient exceeds the maximum value that the division instruction allows.

(11) Single Step Interrupt (Type 1)

This interrupt occurs automatically after execution of each instruction when the Trap Flag (TF) is set
of 1. It is used to execute programs one instruction at a time, after which an interrupt is requested.

50

EC6504-Microprocessor and Microcontroller Unit-1
Following the ISR, the next instruction is executed and another single stepping interrupt request

occurs.
(i11))Non Maskable Interrupt (Type 2)

It is the highest priority hardware interrupt that triggers on the positive edge. This interrupt occurs
automatically when it received a low-to-high transition on its NMI input pin. This interrupt cannot be
disabled or masked. It is used to save program data or processor status in case of system power

failure.

(iv)Breakpoint Interrupt (Type 3)

This interrupt is used to set break point is software debugging programs.
(v) Overflow Interrupt (Type 4)

This interrupt is initiated by INTO (Interrupt on Overflow) instruction. It is used to check overflow
condition after any signed arithmetic operation in the system. The overflow flag (OF) will be set if
the signed arithmetic operation generates a result whose size is larger than the size of destination
register or memory location. At this time overflow interrupt is used to indicate an error condition.
Software Interrupts (INT n)

The software interrupts are non maskable interrupts. They are higher priority than hardware
interrupts.

The software interrupts are called within the program using the instruction INT n. Here ‘n’ means
value and is in the range of 0 to 255. These interrupts are useful for debugging, testing ISRs and
calling procedures.

Hardware Interrupts

INTR and NMI are called hardware interrupts. INTR is maskable and NMI is non maskable
interrupts.

INTR interrupts (type 0-255) can be used to interrupt a program execution. This interrupt is
implemented by using two pins: INTR and INTA. This interrupts can be enabled or disabled by STI
(IF=1) or (IF=0) respectively.

Interrupt Priority

The priority of interrupts of 8086 is shown in Table. The software interrupts except single step

interrupt have the highest priority; followed by NMI, followed by INTR. Single step interrupt has the
least priority. The 8086 checks for internal interrupts before for any hardware interrupt. Therefore
software interrupts have higher priority than hardware interrupts.

Interrupt Priority
INT n, INT 0, Divide Error | Highest
NMI

N\
INTR
Single Step Lowest

51

EC 8691-Microprocessor and Microcontroller Unit-2

UNIT-I1I
8086 SYSTEM BUS STRUCTURE

8086 signals — Basic configurations — System bus timing —System design using 8086 — 10
programming — Introduction to Multiprogramming — System Bus Structure - Multiprocessor
configurations — Coprocessor, Closely coupled and loosely Coupled configurations — Introduction to
advanced processors.

v The 8086 Microprocessor is a 16-bit CPU.
v" Available clock rates: 5, 8 and 10MHz
v" Packages: 40 pin CERDIP or plastic package
v' Operates in single processor or multiprocessor configurations
v Modes of operation: Minimum mode (single processor mode) and Maximum mode
(multiprocessor mode) configuration.
SIGNAL DESCRIPTION OF 8086
AUQ: Explain the signal used in 8086 processor. (Dec 2003,06,07,09,10,13, May 2006,07,08,09,11)
The 8086 signals can be categorized in three groups.
» Signals having common function in minimum and maximum mode.
» Signals having special functions in minimum mode

» Signals having special functions in maximum mode

PIN DIAGRAM
MAX MIN
MODE MODE
Vss(GNDy 1 400 Vee(5P)
AD14 O 2 B0 AD1S
AD13 O3 38 [0 A16/S3
AD12 [4 37 O A17/s4
AD11 O35 36 [0 A18/85
AD10 [Os6 35[0 A19/S6
ADe O7 34 0 BHE/ST
ADS 8 33 0 MNAIX
AD7T O 320 RD
ADS OJ10 8 31| RYGTG HOLD
ADS O 11 g 303 RQGT1 HLDA
AD4 []12 29 [0 TOCK WR
AD3 13 220 52 MAD
AD2 [14 27 S DT/R
AD1 O 15 20 S0 DEN
ADD [] 16 250 Qso ALE
MM O 17 24 0 Qs1 TNTA
INTR []18 23 [0 TEST
CLK 19 22 0 READY
Vss (GND) []20 21 [1 RESET

EC 8691-Microprocessor and Microcontroller

Signals having common function in minimum and maximum mode

COMMON SIGNALS
Name Function Type
AD .- AD , Address Data Bus Bldu'egtlg&%
Aj0/Sg—A16/S3 Address / Status Output 3-State
BHE /S 7 Bus High Enable / Output
oy _S S%atus 3- State
MN / MX Minimum / Input
Maximum Mode
o Control
RD Read Control Output 3- State

TEST Wait On Test Control Input
READY Wait State Controls Input
RESET System Reset Input

/ Non - Maskable
NMI Interrupt Request Input
INTR Interrupt Request Input
CLK System Clock Input
Vee +5V Input

GND Ground

ina Kumar MAMILU3/V1/2004
ADi15— ADo

e These are time multiplexed address and data lines. They act as address lines during first part of

machine cycle and data lines in later part.

A19/Se-A16/ S3

e These are time multiplexed address and status lines. They act as address lines during first part of

machine cycle and status lines in later part.

e These are most significant address lines for memory operations. During 1/0 operations these lines are

low.

Unit-2

e The status signals Ssand S indicate which segment registers is being used for memory access.

e The status of interrupt enable flag bit will be displayed on Ss.

e The status line Se is always low.

Sa S3 Indications
0 0 ES
0 1 SS
1 0 CS
1 1 DS

EC 8691-Microprocessor and Microcontroller Unit-2
BHE/S,- Bus high enable/ status

Low signal on BHE indicates access to higher order memory banks, otherwise access is to only lower

order memory banks.

e BHE and Ao decide the memory bank and type of access.

e Sy has no function.

BHE | Ao | Indications

0 0 Both higher and lower order banks for word read/ write
0 1 Higher order bank for byte read/ write

1 0 Lower order bank for byte read/ write

1 1 None

RD
e Read control signal

e RD is low when 8086 is receiving the data from memory or 1/O.

READY

e Wait state request signal.

e A HIGH on READY input causes the 8086 to extend the machine cycle by inserting wait states.

TEST

e This input is examined by WAIT instruction.

e If the TEST input goes low, execution will continue, else, the processor remains in idle state.

INTR

e This is level triggered input.

e INTR is sampled during the last clock cycle of each instruction to determine the availability of
request.

e These interrupts can be masked internally by resetting the interrupt enable flag.

NMI

e NMI (Non-Maskable interrupt) is positive edge triggered non-maskable interrupt request.

CLK

e CLKi s clock signal from external crystal oscillator.

e 8086 requires clock signal with 33% duty cycle.

EC 8691-Microprocessor and Microcontroller Unit-2

RESET

e System reset signal must be high for atleast 4 clock periods to cause reset.

e Reset operation takes about 10 clock periods.

Vce

e +5V supply with £5% tolerance.

GND

e Ground for internal circuits.

MN/MX

e High on this pin selects minimum mode and low signal selects maximum mode.

Signals having special functions in minimum mode

Minimum Mode Signals (MN/MX =Veo)
Name Function Type
HOLD Hold Request Input
HLDA Hold Acknowledge Output
WR Write Control S
MIO0 Memory or IO Control Og_tgptt
ate
- Data Transmit / Output
i Receiver }‘%tate
DEN Date Enable glsl:p:u
ate
ALE Address Latch Enable Output
INTA Interrupt Acknowledge Output

ALE
e Address latch enable.

e High on this pin indicates valid address on address/data bus.

R

e Write control signal.
e WRis low when 8086 sends the data to memory or 1/0.
M/T0

e M/TO = High, indicates memory access.

EC 8691-Microprocessor and Microcontroller Unit-2
e M/TO = low, indicates I/O access.

INTA
e INTA is the acknowledgement for the interrupt request on INTR pin.

e Itis pulsed low in two consecutive bus cycles.

e First pulse indicates interrupt acknowledgement.

e During second pulse, external logic puts the interrupt type on data bus.
DT/R

e Data transmit/receive.

e This signal, when high indicates data is being transmitted by 8086.

e The low signal indicates that 8086 is receiving the data.

EN

e Data bus enable.

e This signal, when low indicates that the 8086 processors address/data bus is used as data bus.

e Itisused to enable data buffers.

HOLD

e HOLD signal when high indicates another master has requested for direct memory access.

e When HOLD becomes low, it indicates that direct memory access is no more required.

HLDA

e The microprocessor sends high signal on HLDA to indicate acknowledgement of DMA request. It
then tristates the buses and control.

e When HOLD becomes low, the microprocessor makes HLDA low and regains the control of buses.

Signals having special functions in maximum mode

Maximum mode signals (MN / MX = GND)

Name Function Type

RQ/GT1,0 | Request/ Grant Bus Bidirectional
Access Control

- Output,

LOCK Bus Priority Lock Control 3_ State
- Output,
S.— 5, Bus Cycle Status 3_ State
Qs1, QS0 Instruction Queue Status Output

EC 8691-Microprocessor and Microcontroller Unit-2
LOCK

e This signal indicates that an instruction with lock prefix is being executed and the bus is not to be
used by any other processor.

e In maximum mode DMA request is received and acknowledged using these signals.

R /GT,has highest priority compared to R@/GT,

2’511'5[!'

e These are the status lines which indicate the type of operation being carried out by the processor.

5, 5, 5, Control functions

0 0 0 Interrupt acknowledge
0 0 1 1/O read

0 1 0 I/0O write

0 1 1 Halt

1 0 0 Opcode fetch

1 0 1 Memory read

1 1 0 Memory write

1 1 1 No operation

25,85,

e These two signals are decoded to provide instruction queue status.

aQs, as, Indications

0 0 Queue is in idle state

0 1 First byte of opcode has entered queue

1 0 Queue empty

1 1 Subsequent byte of opcode has entered queue

EC 8691-Microprocessor and Microcontroller Unit-2

Basic configurations :

1. Minimum Mode configuration:

AUQ: Explain with neat diagram minimum mode configuration of 8086 system. (Dec 2006,08,
May 2006,07)
v' A processor is in minimum mode when its MN / /MX pin is strapped to +5V. In a minimum mode 8086

system, the microprocessor 8086 is operated in minimum mode by strapping its MN/MX pin to logic 1.

v In this mode, all the control signals are given out by the microprocessor chip itself.

<

There is a single microprocessor in the minimum mode system.

v' The remaining components in the system are latches, transreceivers, clock generator, memory and 1/O
devices. Some type of chip selection logic may be required for selecting memory or I/O devices,
depending upon the address map of the system.

v’ Latches are generally buffered output D-type flip-flops like 74LS373 or 8282.

v' They are used for separating the valid address from the multiplexed address/data signals and are
controlled by the ALE signal generated by 8086.

v Transreceivers are the bidirectional buffers and sometimes they are called as data
amplifiers. They are required to separate the valid data from the time multiplexed address/data
signals.

v' They are controlled by two signals namely, DEN and DT/R.

v' The DEN signal indicates the direction of data, i.e. from or to the processor. The system contains memory

for the monitor and users program storage.

v The clock generator generates the clock from the crystal oscillator and then shapes it and divides to makg

it more precise so that it can be used as an accurate timing reference for the system.

v' The clock generator also synchronizes some external signal with the system clock. The general systen

organisation is as shown in below fig.

EC 8691-Microprocessor and Microcontroller

{ol

L 7

Clock
(8284A)

CLK RESET

READY
MN/MX
ALE
BHE

A19-A16

AD15-ADO

8086

DEN
DT/R

M/I0
WR
RD

HOLD
HLDA
INTR

INTA

A

A

[+5 V

Address
|atches
(3 8282s)

Unit-2

Transceivers
(2 8286s)
optional

A

READY

Y

RESET

> Control bus >

7

Note: In an 8088 system BHE is SSO, M/IO is IO/M, and only one 8286 is needed.

Figure 8-4 Minimum mode system.

oo ©

EC 8691-Microprocessor and Microcontroller Unit-2
2. Maximum Mode configuration:

AUQ: Explain with neat diagram maximum mode configuration of 8086 system. (Dec 2007)
A processor is in maximum mode when its MN / /MX pin is grounded. The maximum mode

definitions of pins 24 through 31 are given in table and a typical maximum mode configuration is shown
in Fig.
The circuitry is for converting the status bits /S0, /S1 and /S2 into the 1/0 and memory transfer

signals needed to direct data transfers and for controlling the 8282 latches and 8286 transceivers.

It is normally implemented with an Intel 8288 bus controller. Also included in the system is an
interrupt priority management device: however, its presence is optional.

v In the maximum mode, there may be more than one microprocessor in the system configuration.
The components in the system are same as in the minimum mode system.

v The basic function of the bus controller chip 1C8288, is to derive control signals like RD and WR (
for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the
status lines.

v" The bus controller chip has input lines S2, S1, SO and CLK. These inputs to 8288 are driven by
CPU. The process to be activated for this combination is listed below.

v" It derives the outputs ALE, DEN, DT/R, MRDC, MWTC,AMWC, IORC, IOWC and AIOWC. The
AEN, IOB and CEN pins are specially useful for multiprocessor systems.

v' AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The significance of the
MCE/PDEN output depends upon the status of the 10B pin.

v If I0B is grounded, it acts as master cascade enable to control cascade 8259A, else it acts as peripheral

data enable used in the multiple bus configurations.

The HOLD and HLDA pins become the /RQ / /GTO and /RQ / /GT1 pins. Both bus requests and bus
grants can be given through each of these pins. They are exactly the same except that if requests are seen
on both pins at the same time, then one on /RQ / /GTO is given higher priority. A request consists of a
negative puls arriving before the start of the current bus cycle. The grant is negative puls that is issued at
the beginning of the current bus cycle provided that:

1. The previous bus transfer was not the low byte of a word to or from an odd address if the CPU is
an 8086. For 8088, regardless of the address alignment the grant signal will not be sent until
second byte of a word reference is accessed.

2. The first pulse of an interrupt acknowledgement did not occure during the previous bus cycle.

3. Aninstruction with a LOCK prefix is not being executed.

4. If condition 1 or 2 is not met, then the grant will not be given until the next bus cycle and if
condition 3 is not met, the grant will wait until the locked instruction is completed. In response to
the grant the three-state pins are put in their high-impedance state and the next bus cycle will be
given to the requesting master.

EC 8691-Microprocessor and Microcontroller Unit-2

]
5

READY

RESET

T N

= ey

K RESET

OE
READY |

= Latches

MN/MX —_L 82825

A19-A16 > K Address bus >

l

4

AOIS-ADO< >
STB
8086/8088
Tr vers
). 8286s Data bus
OE
[T
Bus controller
8288
fuse, Control bus
S0 1]
]
5 £
Interrupt §
acknowledge o
2 g
-1
INTR Priority interrupt C: £
RG/5T0 ———— 9 ‘o= |

|

RO/GT1 —1 and d logic

Note: BHE is not present in an 8088 system

Figure 8-9 Typical maximum mode configuration.

Read Write Timing Diagram

AUQ: Draw and explain the timing diagram of different cycle in 8086 processor. (Dec 2007,
May 2009,13, Dec 2016, May 2017)

The typical sequence of bus cycles is shown below;

10

EC 8691-Microprocessor and Microcontroller Unit-2

Wait states while waiting for memory

! or I/O interface to respond A

——] ey
SR [U A RN N U I R BN R R I R N R I R N N N R N R I A N PO B P B R B P B
h.._.v._) 'l_.r_f
\) ldle states between !

bus cycles

Bus timing for Minimum Mode:

v The opcode fetch and read cycles are similar. Hence the timing diagram can be categorized in two parts, thg
first is the timing diagram for read cycle and the second is the timing diagram for write cycle.

v The read cycle begins in T1 with the assertion of address latch enable (ALE) signal and also M / 10 signal
During the negative going edge of this signal, the valid address is latched on the local bus.

v' The BHE and A0 signals address low, high or both bytes. From T1 to T4 , the M/IO signal indicates
memory or I/O operation.e At T2, the address is removed from the local bus and is sent to the output. Thg
bus is then tristated. The read (RD) control signal is also activated in T2.

v The read (RD) signal causes the address device to enable its data bus drivers. After RD goes low, the valig
data is available on the data bus.

v' The addressed device will drive the READY line high. When the processor returns the read signal to high
level,the addressed device will again tristate its bus drivers.

e e e L e

ADDYSTATUS 2 K0 Foey X ST 8 o8y X

ADD /DATA

RD

i /
DT/R - /

Figure:Readcycle timing diagarm of minimum mode8086

11

EC 8691-Microprocessor and Microcontroller Unit-2

»

~ One bus cycle

IR TR R S
CLK _[—_/ _/ \
2::@:-)—(Address out x Status out
Ag-Ag H ‘ Address out
AD,-ADg —(Address out x Data write
ALE ._/—_\ |
10/M \

Bk

WjﬁTTT

-~
-l
|

DT/R
-—d

r
|

2
z
|
L.
o
1T

- : L @

Figure: Write cycle timing diagarm of minimum mode8086

A write cycle also begins with the assertion of ALE and the emission of the address. The M/IO signal is agair]
asserted to indicate a memory or 1/O operation. In T2, after sending the address in T1, the processor sends the
data to be written to the addressed location.
The data remains on the bus until middle of T4 state. The WR becomes active at the beginning of T2 (unlike R
is somewhat delayed in T2 to provide time for floating).

The BHE and A0 signals are used to select the proper byte or bytes of memory or 1/0 word to be read or write.

The M/10, RD and WR signals indicate the type of data transfer as specified in table below.

M/ IO RD WR Transfer Type
0 0 1 I/0 read
0 1 0 L0 write
1 0 1 Memory read
1 1 0 Aemory write

12

EC 8691-Microprocessor and Microcontroller Unit-2

Bus Timing for Maximum Mode:

v" The maximum mode system timing diagrams are divided in two portions as read (input) and write (output)
timing diagrams.

v The address/data and address/status timings are similar to the minimum mode.

v' ALE is asserted in T1, just like minimum mode. The only difference lies in the status signal used and the
available control and advanced command signals.

v Here the only difference between in timing diagram between minimum mode and maximum mode is the
status signals used and the available control and advanced command signals.

v" RO, S1, S2 are set at the beginning of bus cycle.8288 bus controller will output a pulse as on the ALE and
apply a required signal to its DT / R pin during T1.

v' In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it will activate MRDC or IORC.
These signals are activated until T4. For an output, the AMWC or AIOWC is activated from T2 to T4 and
MWTC or IOWC is activated from T3 to T4.

v The status bit SO to S2 remains active until T3 and become passive during T3 and T4.

v If reader input is not activated before T3, wait state will be inserted between T3 and T4.

I‘il IOne bus (I'}'cle : _—_

G e e
AL ——‘r—\‘ /

Add/Status I BEEAg=As AS:=S,)
AddData ---eeeee- < K A.'\]s - .'i;—_> — @ls:—go;}------------..

MRDC . ———— /

DI /K \ ; 7 g /
it / e Lo

Figure:Memory read timing diagram in maximum mode

13

EC 8691-Microprocessor and Microcontroller Unit-2

Ulle Dus cycie

Mﬁﬁﬁﬁ

'S,-S, Active X......I.lses!i_?.._..m_—

ADD/STATUS GRD) T R T R T S e
ADD/DATA > <«u“a,,>< Data out D, — Q. D
ANIWC or - \ I —
AIOWC \ ATEE AR
MWIC or IOWC — —/__A__4

DT/R

Figure: Memory write timing diagram in maximum mode

10 programming

With example explain the input output program concepts in 8086.

On the 8086, all programmed communications with the 1/O ports is done by the IN and
OUT instructions defined in Fig. 6-2.

v"IN and OUT instructions

Name Mnemonic and Format Description
Input
Long form, byte IN AL, PORT (AL) <- (PORT)
Long form, word IN AX, PORT (AX) <- (PORT+1: PORT)
Short form, byte IN AL, DX (AL) <- ((DX))
Short form, word IN AX, DX (AX) <- ((DX) + 1: (DX))
Output
Long form, byte OUT PORT, AL (PORT) <- (AL)
Long form, word OUT PORT, AX (PORT+1: PORT) <- (AX)
Short form, byte OUT DX, AL ((DX)) <- (AL)
Short form, word OUT DX, AX ((DX)+1: (DX)) <- (AX)

Note: PORT is a constant ranging from 0 to 255
Flags: No flags are affected
Addressing modes: Operands are limited as indicated above.

If the second operand is DX, then there is only one byte in the instruction and the contents of DX
are used as the port address.

Unlike memory addressing, the contents of DX are not modified by any segment register. This
allows variable access to 1/O ports in the range 0 to 64K. The machine language code for the IN
instruction is:

14

EC 8691-Microprocessor and Microcontroller Unit-2
0-Byte transfer
Vi } Present only

1-Word transfer in long form

171 1 0 1 0 W Port Address

0—Long form
1—Short form

Although AL or AX is implied as the first operand in an IN instruction, either AL or AX must be
specified so that the assembler can determine the W-bit.

Similar comments apply to the OUT instruction except that for it the port address is the
destination and is therefore indicated by the first operand, and the second operand is either AL or AX. Its
machine code is:

T 1 3.0 1T 1 W ‘ ‘ Port Address
L{U—Long form L{ Present only
1—Short form in long form

Note that if the long form of the IN or OUT instruction is used the port address must be in the
range 0000 to OOFF, but for the short form it can be any address in the range 0000 to FFFF (i.e. any
address in the 1/0 address space). Neither IN nor OUT affects the flags.

The IN instruction may be used to input data from a data buffer register or the status from a
status register. The instructions

IN AX, 28H

MOV DATA _WORD, AX
would move the word in the ports whose address are 0028 and 0029 to the memory location
DATA_WORD.

PROGRAMMED I/0

Programmed 1/0O consists of continually examining the status of an interface and performing an
I/0O operation with the interface when its status indicates that it has data to be input or its data-out buffer
register is ready to receive data from the CPU.

15

EC 8691-Microprocessor and Microcontroller Unit-2

Initialization

PO

Data
in input
reg.

Input byte or
word to CPU

Y

| Operate on byte or word ‘

3

Transfer byte or word
to memory buffer

QOperation
complete

Process data in
buffer

|

Figure 6-4 Programmed input.

As a more complete example, suppose a line of characters is to be input from a terminal to an 82-
byte array beginning at BUFFER until a carriage return is encountered or more then 80 characters are
input. If a carriage return is not found in the first 81 characters then the message "BUFFER
OVERFLOW" is to be output to the terminal; otherwise, a line feed is to be automatically appended to
the carriage return.

Because the ASCII code is a 7-bit code, the eighth bit, bit 7, is often used as parity bit during the
transmission from the terminal. Let us assume that bit 7 is set according to even parity and if an odd
parity byte is detected, a branch is to be made to ERROR. If there is no parity error, bit 7 is to be cleared
before the byte is transferred to the memory buffer.

INTERRUPT 1/O

Even though programmed I/O is conceptually simple, it can waste a considerable amount of time
while waiting for ready bits to become active. In the above example, if the person typing on the terminal

16

EC 8691-Microprocessor and Microcontroller Unit-2
could type 10 characters per second and only 10 ps is required for the computer to input each character,
then approximately

99,990

100,000

of the time is not being utilized.

X 100% = 99.99%

Before an 8086 interrupt sequence can begin, the currently executing instruction must be completed
unless the current instruction is a HLT or WAIT instruction.

For a prefixed instruction, because the prefix is considered as part of the instruction, the interrupt
request is not recognized between the prefix and the instruction.

In the case of the REP instruction, the interrupt request is recognized after the primitive operation
following the REP is completed, and the return address is the location of the REP prefix.

For MOV and POP instructions in which the destination is a segment register, an interrupt request is
not recognized until after the instruction following the MOV or POP instruction is executed.

For the 8086, once the interrupt request has been recognized, the interrupt sequence consists of:

Establishing a type N.

Pushing the current contents of the PSW, CS and IP onto the stack (in that order).

Clearing the IF and TF flags.

Putting the contents of the memory location 4*N into the IP and the contents of 4*N+2 into the
CS.

el A

Thus, an interrupt causes the normal program sequence to be suspended and a branch to be made to
the location indicated by the double word beginning at four times the type (i.e. the interrupt pointer).
Control can be returned to the point at which the interrupt occurred by placing an IRET instruction at the
end of the interrupt routine.

It was mentioned that there are two classes of interrupts, internal and external interrupts, with external
interrupts being caused by a signal being sent to the CPU through one of its pins, which for the 8086 is
either the NMI pin or the INTR pin.

An interrupt initiated by a signal on the NMI pin is called a nonmaskable interrupt and will cause a
type 2 interrupt regardless of the setting of the IF flag. Nonmaskable interrupt signals are normally
caused by circuits for detecting catastrophic events.

An interrupt on the INTR pin is masked by the IF flag so that this flag is O the interrupt is not
recognized until IF returns to 1.

When IF=1 and a maskable external interrupt occures, the CPU will return an acknowledgment signal
to the device interface through its /INTA pin and initiate the interrupt sequence.

The acknowledgment signal will cause the interface that sent the interrupt signal to send to the CPU

(over the data bus) the byte which specifies the type and hence the address of the interrupt pointer. The
pointer, in turn, supplies the beginning address of the interrupt routine.

17

EC 8691-Microprocessor and Microcontroller Unit-2

There are several ways of combining with interrupt 1/0, some involving only software, some only
hardware, and some a combination of the two. Let us consider the following means of giving priority to
an interrupt system:

1. Polling
2. Daisy chaining
3. Interrupt priority management hardware

By putting a program sequence (similar to the one in Fig.6-7) at the beginning of the interrupt routine,
the priority of the interfaces could be established by the order in which they are polled by the sequence.

Daisy chaining is a simple hardware means of attaining a priority scheme. It consists of associating a
logic circuit with each interface and passing the interrupt acknowledge signal through these circuits as
shown in Fig.(a). The details of daisy chain logic are shown in Fig.6-14(b). The priority of an interface is
determined by its position on the daisy chain. The closer it is to the CPU the higher its priority.

Device 1 Device 2 Device 3
Interface Imterface Interface
.
Interrupt) ' !
acknowledge { Irvterrupt ; {
request
Draizy chain
logic
ol Open

. collector A
driver

INTA

CPU and bus
INTR vﬂ—OQ %

control logic

+6 v

{a} Daisy chain

Interrupt
acknowledge
(active low)

«——— Interrupt
_________________ = request

Daisy chain
logic

 ERPSEREEIE Se E E e e e it SOOI

INTA

INTR

(b) Logic

Figure 6-14 Daisy chain arrangement.

18

EC 8691-Microprocessor and Microcontroller Unit-2

BLOCK TRANSFERS AND DMA

The activity involved in transferring a byte or word over the system bus is called a bus cycle. The
execution of an instruction may require more than one bus cycle. For example the instruction:

MOV AL, TOTAL
would use a bus cycle to bring in the contents of TOTAL in addition to the cycle needed to fetch the

instruction.

During any given bus cycle one of the system components connected to the system bus is given
control of the bus. This component is said to be the master during that cycle and the component it is
communicating with is said to be the slave.

The 8086 receives bus requests through its HOLD pin and issues grants from its hold
acknowledge (HLDA) pin. A request is made when a potential master sends a 1 to the HOLD pin.
Normally, after the current bus cycle is complete the 8086 will respond by putting a 1 on the HLDA pin.

During a block input byte transfer the following sequence occurs as the datum is sent from the
interface to the memory:

The interface sends the controller a request for DMA service

The controller gains control of the bus

The contents of the address register are put on the address bus

The controller sends the interface a DMA acknowledgment which tells the interface to put data on
the data bus (For an output it signals the interface to latch the next data placed on the bus)

The data byte is transferred to the memory location indicated by the address bus

The controller relinquishes the bus

The address register is incremented by 1

The byte count register is decremented by 1

If the byte count register is nonzero return to step 1; otherwise stop

el A

©o~No O

The controller/interface design shows bidirectional address lines connected to the controller and only
unidirectional address lines going to the interface.

Multiprocessor Systems
Explain the different configurations of multiprocessor systems. (May 2008)

Multiprocessor Systems refer to the use of multiple processors that execute instructions
simultaneously and communicate using mailboxes and semaphores Maximum mode of 8086 is designed
to implement 3 basic multiprocessor configurations:

1. Coprocessor (8087)
2. Closely coupled (dedicated 1/0 processor: 8089)
3. Loosely coupled (Multi bus)
Coprocessors and closely coupled configurations are similar - both the CPU and the external
processor share:
v' Memory
v 1/0O system
v" Bus & bus control logic
v Clock generator

19

EC 8691-Microprocessor and Microcontroller Unit-2
Multiprocessor configuration
Discuss about the multiprocessor system of 8086.

Explain multiprocessor system. (June 2016, Dec 2016)

Introduction:
Multiprocessor Systems refer to the use of multiple processors that execute instructions simultaneously and
communicate using mailboxes and semaphores.

Maximum mode of 8086 is designed to implement 3 basic multiprocessor configurations:
1. Coprocessor (8087)

2. Closely coupled (8089)

3. Loosely coupled (Multibus)

Need for Multiprocessor system

1. Due to limited data width and lack of floating point arithmetic instructions, 8086 requires many
instructions for computing even single floating point operations. For this Numeric data processor
8087 is used.

2. Some processor like DMA processor can take care of low level operations , while the 8086 CPU
execute high level operations.

Advantages of Multiprocessor
e Easy to add more processor for expansion as per requirement

e When failure occurs, it is easier to replace the faulty processor
e Avoiding the expense of unneeded capabilities of a centralized system by combining several low

cost processor.

6.Explain how co processor works and interacts with 8086 . (June 2016)

Coprocessor configuration
Coprocessors and closely coupled configurations are similar in that both the CPU and the external processor

share:
e Memory
e 1/O system

e Bus & bus control logic
e Clock generator
WAIT instruction allows the processor to synchronize itself with external hardware, eg., waiting for
8087 math co-processor. When the CPU executes WAIT waiting state.
TEST input is asserted (low), the waiting state is completed and execution will resume. ESC
instruction: ESC opcode, operand, opcode: immediate value recognizable to a coprocessor as an
instruction opcode

Coprocessor cannot take control of the bus, it does everything through the CPU.

e 8089 shares CPU and clock and bus control logic

e It communication with host CPU is by the way of shared memory
20

EC 8691-Microprocessor and Microcontrol

ler

e The host sets up a message (command) in memory

e The independent processor interrupts host on completion.

Unit-2

Co processor adds instruction to the instruction set. An instruction to be executed by the co- processor

is indicated by an escape (ESC) prefix or instruction.

B0E6/8088

Coprocessor (ie: BOET)

o Monitor the |4
8086 or 8088

Execute
2084

instructions ,,-’I

Il/ﬂ- H\I 1.1- k. . it
\) e

Deactivate the
host's !TEST pin

and execute the
specified operation

e, Wake up the
I 2085 or 8088

!

Activate the
I'TEST pin

Figure: Flow diagram of coprocessor

The steps to be followed during the program execution of co processor are

The 8086 fetches the instruction

The co processor monitors the instruction sequence and captures its own instructions.

1
2
3. The ESC is decoded by the CPU and coprocessor simultaneously.
4. The CPU computes the 20 bit address of memory operand

and does a dummy read. The co

processor captures the address of the data and obtains control of the bus to load or store as

needed.

5. The co processor sends BUSY (high) to the TEST pin

6. The CPU goes to the next instruction and if this is an 8086 instruction, the CPU and coprocessor

execute in parallel.

21

EC 8691-Microprocessor and Microcontroller Unit-2
7. If another coprocessor instruction occurs, the 8086 must wait until BUSY goes low.ie TEST pin

become active. To implement this, a WAIT instruction is put in front of most 8087 instructions by
the assembler.
8. The WAIT instruction does the operations ie wait until the TEST pin is active.

9. The co processor also makes use of Queue status.

*hhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkhhkhkhkhhkhihhkhhhkhihhkhkhhkhkihhkhkihkhkkihkhkkihhkhkkirhhkkihhkkhihkkhihkkhihkhihkiiik

7. Explain the closely coupled configuration of 8086 with example
. Closely Coupled Configuration:

The main difference between co processor and closely coupled configuration is no special instructior
such as WAIT and ESC is used. The communication between 8086 and independent processor is done througk

memory space.
NOTE: Closely Coupled processor may take control of the bus independently. Two 8086°s cannot be closely

coupled.

CLOCK

—»] 8086 i
Bus System Bus
—» Control [« .
Logic
Coprocessor
or
™ Independent [€ Memory 1/0
Pocessor

Figure: closely coupled configuration

The 8086 sets up a message in memory and wakes up independent processor by sending
command to one of its ports. The independent processor then accesses the memory to execute the task ir
parallel with the 8086.When task is completed the external processor informs the 8086 about the completion o

task by using either a status bit or an interrupt request.

22

EC 8691-Microprocessor and Microcontroller Unit-2

8036/8088 Independent Processor (2089)
- Waitfor |
,-’f Set up ™ ™ request |

message I
=
l\hln- ¥
- . Feich the
/ Wake up \ EE:IL:E

independent processor

with OUT instruction Perform
/ reguested
task
l./fE'.-;e:.um ™ HNotify
BO34S j CPU of
\Mmsl:ru"tmn.-:jf completion

fﬁ;c far re;].-'h\{

of interrapt |

N

T

Figure:Interaction between 8086 and 8089

*hhkkkhkhkhkkhkhkhkkhhkhkkhhkhkrhhkrhhhkihhhkhhhkhhhkhhhkhhhkhkhhkhkihkhkkrhkhkkihhkkihkhkihhkkihhkihhkkihhkkiiikkiiikkikx

8. Write brief note on 8086 loosely coupled system configuration. (April 2006, May 2017)
Loosely Coupled Configuration:

e In loosely coupled configuration a number of modules of 8086 can be interfaced through a common system
bus to work as a multiprocessor system.

e Each module in the loosely coupled configuration is an independent microprocessor based system with its
own clock source, and its own memory and 1 0 devices interfaced through a local bus.
e Each module can also be a closely coupled configuration of a processor or coprocessor. The block

diagram of a loosely coupled configuration of 8086 is shown in figure

23

EC 8691-Microprocessor and Microcontroller

Maodule - 1
Cio kr . E
ot | s08&/a0s8 k] :

< o [JetemBs |
- e Control Logic Control Logie [
Lo ";""3'

i Memsz /0
- Devicas .
Module - 2
- e

: %:rer: :al:or [———> sose’s088 K] :

< Local Bus ~ Loca! Bus System Bus :

: Contrat Logic [~—————| Control Logic fm——
‘ Local Local :
Memary vo :

Module - 3
wc'm,‘u > 8085/8088 K —— :

! n Local Bus ~| LocalBus [« +| System Bus :

H - M ; -

' Conrral Logic Control Logic [fe————

P | Local L:gai

| wemory Demi

Fig loosely coupled configuration

24

System Bus

System

System
I/O devices

Unit-2

EC 8691-Microprocessor and Microcontroller Unit-2
Advantages:

1. Better system throughput by having more than one processor.

2. The system can be expanded in modular form. Each processor is an independent unit and normally
on a separate PC board. One can be added or removed without affecting the others in the system.

3. A failure in one module normally does not affect the breakdown of the entire system and faulty module

can be easily detected and replaced.

4. Each processor may have its own local bus to access dedicated memory or 1/O devices so that a greate

degree of parallel processing can be achieved

Disadvantages
1. Bus Arbitration (contention): Make sure that only 1 processor can access the bus at any given time
2. It must synchronize local and system clocks for synchronous transfer

3. It requires control chips to tie into the system bus.

*hhhhhkhkkkkhkhkhkhrrhhhkhkhkhkhkhkhihrrhirhhkhhhhhrrhhhhhhhhhrrrhirhdhhhhhirrhiihhhhiiiirx

9.Explain the basic bus access control and arbitration schemes used in multiprocessor systems.
(dec 2008)

Bus allocation schemes:
» It needs some kind of priority allocation.

It output a Bus Request (BRQ) to request the bus and BRQ line goes to some controller.
The CPU input a Bus Grant (BGR) to gain access to bus
The Bus access logic output a Bus Busy >BBSY= signal to hold the bus.

Y V VYV V

To allocate the bus various methods are available. They are
e Daisy Chaining

e Polling

e Independent Priority

Daisy Chaining:

Need a bus controller to monitor bus busy and bus request signals

e It does not require any priority resolving network, rather the priorities of all the devices are
essentially assumed to be in sequence.

e All the masters use a single bus request line for requesting the bus access.

e The controller sends a bus grant signal, in response to the request, if the busy signal is inactive
when the bus is free.

e The bus grant pulse goes to each of the masters in the sequence till it reaches a requesting master.

e The master then receives the grant signal, activates the busy line and gains the control of the bus.

e The priority is decided by the position of the requesting master in the sequence.

25

EC 8691-Microprocessor and Microcontroller Unit-2

Master N

Bus Access
Logic

Master 2

Bus Access
Logic

Master 1

Bus Access
Logic

Bus

Controller [
BBSY
PESE " v
Polling:
e In polling schemes, a set of address lines is driven by the controller to address each of the masters in
sequence.
e When a bus request is received from a device by the controller, it generates the address on the address
lines.
o If the generated address matches with that of the requesting masters, the controller activates the BUSY
line.
Master 1 Master 2 Master N
Bus Access Bus Access o Bus Access
Logic Logic Logic
Bus

Controller

Rotating
Encnd?r € BRQ v v ¥
0toN BBSY
< A 4 Y \

Independent Priority

¢ Inindependent priority scheme each master has a pair of Bus request and Bus grant line and each pair has
a priority assigned to it.

e The built in priority decoder within the controller selects the highest priority request a asserts the
corresponding bus grant signal.

e Synchronization of the clocks must be performed once a Master is recognized.

e Master will receive a common clock from one side and pass it to the controller which will derive a clock
for transfer.

26

EC 8691-Microprocessor and Microcontroller Unit-2
¢ Due to separate pairs of bus request and bus grant signals, arbitration is fast.

Master 1 Master 2

Bus Access Bus Access
Logic Logic

Master N

Bus Access

Logie

Bus
Controller Bus

Graatn

BRQI

BRQ2

BEQn

Bus Busy Y l y

Introduction to Advanced processors: 80286 Microprocessor
Salient Features of 80286
v" The 80286 is the first member of the family of advanced microprocessors with memory management
and protection abilities. The 80286 CPU, with its 24-bit address bus is able to address 16 Mbytes of
physical memory. Various versions of 80286 are available that runs on 12.5 MHz, 10 MHz and 8 MHz
clock frequencies. 80286 is upwardly compatible with 8086 in terms of instruction set.
v 80286 has two operating modes namely real address mode and virtual address mode. In real address
mode, the 80286 can address upto 1Mb of physical memory address like 8086. In virtual address mode, it
can address up to 16 Mb of physical memory address space and 1 GB of virtual memory address space.
v" The instruction set of 80286 includes the instructions of 8086 and 80186. 80286 has some extra
instructions to support operating system and memory management. In real address mode, the 80286 is
object code compatible with 8086. In protected virtual address mode, it is source code compatible with
8086. The performance of 80286 is five times faster than the standard 8086.
Need for Memory Management

The part of main memory in which the operating system and other system programs are stored is
not accessible to the users. It is required to ensure the smooth execution of the running process and also
to ensure their protection. The memory management which is an important task of the operating system is
supported by a hardware unit called memory management unit.
Swapping in of the Program

Fetching of the application program from the secondary memory and placing it in the physical
memory for execution by the CPU.
Swapping out of the executable Program

Saving a portion of the program or important results required for further execution back to the
secondary memory to make the program memory free for further execution of another required portion of
the program.
Concept of Virtual Memory

Large application programs requiring memory much more than the physically available 16Mbytes
of memory, may be executed by diving it into smaller segments. Thus for the user, there exists a very
large logical memory space which is not actually available. Thus there exists a virtual memory which

27

EC 8691-Microprocessor and Microcontroller Unit-2

does not exist physically in a system. This complete process of virtual memory management is taken care
of by the 80286 CPU and the supporting operating system.

Internal Architecture of 80286

Register Organization of 80286

The 80286 CPU contains almost the same set of registers, as in 8086, namely

1. Eight 16-bit general purpose registers

2. Four 16-bit segment registers

3. Status and control registers

4.Instruction Pointer

The flag register reflects the results of logical and arithmetic instructions.

- NT IOPL | OF | DF | IF | TE | SF | Z2F | - | AF | - PF | - | CF

Fig. 80280 Flag Register
D2, D4, Ds, D7 and D11 are called as status flag bits. The bits Ds (TF) and D9 (IF) are used for controlling
machine operation and thus they are called control flags. The additional fields available in 80286 flag
registers are:
1. IOPL - I/O Privilege Field (bits D12 and D13)
2. NT - Nested Task flag (bit D14)
3. PE - Protection Enable (bit D16)
4. MP - Monitor Processor Extension (bit D17)
5. EM - Processor Extension Emulator (bit D18)
6. TS — Task Switch (bit D19)

Protection Enable flag places the 80286 in protected mode, if set. This can only be cleared by
resetting the CPU. If the Monitor Processor Extension flag is set, allows WAIT instruction to generate a
processor extension not present exception.

Processor Extension Emulator flag if set, causes a processor extension absent exception and
permits the emulation of processor extension by the CPU.

Task Switch flag if set, indicates the next instruction using extension will generate exception 7,
permitting the CPU to test whether the current processor extension is for the current task.

Machine Status Word (MSW)

The machine status word consists of four flags — PE, MO, EM and TS of the four lower order bits
D19 to D16 of the upper word of the flag register. The LMSW and SMSW instructions are available in
the instruction set of 80286 to write and read the MSW in real address mode.

Internal Block Diagram of 80286

The CPU contain four functional blocks

1. Address Unit (AU), 2. Bus Init (BU)

3. Instruction Unit (1U), 4. Execution Unit (EU)

The address unit is responsible for calculating the physical address of instructions and data that
the CPU wants to access. Also the address lines derived by this unit may be used to address different
peripherals. The physical address computed by the address unit is handed over to the bus unit (BU) of the
CPU. Major function of the bus unit is to fetch instruction bytes from the memory. Instructions are
fetched in advance and stored in a queue to enable faster execution of the instructions.

The bus unit also contains a bus control module that controls the prefetcher module. These
prefetched instructions are arranged in a 6-byte instructions queue. The 6-byte prefetch queue forwards
the instructions arranged in it to the instruction unit (1U).

28

EC 8691-Microprocessor and Microcontroller Unit-2
The instruction unit accepts instructions from the prefetch queue and an instruction decoder

decodes them one by one. The decoded instructions are latched onto a decoded instruction queue. The
output of the decoding circuit drives a control circuit in the execution unit, which is responsible for
executing the instructions received from decoded instruction queue.

The decoded instruction queue sends the data part of the instruction over the data bus. The EU
contains the register bank used for storing the data as scratch pad, or used as special purpose registers.
The ALU, the heart of the EU, carries out all the arithmetic and logical operations and sends the results

over the data bus or back to the register bank.

8.2.2 Internal Block Diagram of 80286

s i ————— :

| :,‘ I Aa-he

: (! LATOHES AND ORVERS "

| PHYSICAL "Ly |

: ADOR 1 T PREFETOHER 1 e

| w/ ' NIENACE 14—+ PEAEQ

|/ oeratr =adna & B CONTRO, 13

| ADOER SEGMENT | seauent Iy) S

| e Ly CODINTA

I CHECKER a I " oK, WL

| / r DATA TRANSCENERS = ooy

I

e iy Lo l o L LI L D Dl Ll oy od L by ot e G-BYTE |

k 1 [PREFETCH !

| AU 1 ! QUEUE “m:

| A §il gl Bt oo enin i &

: ' “1&. :'"sotooom | bo— ReSE

4 ! INSTRUCTION m;cu

| 1 QUEVE DECODER - | Vg

o PRI 5 %) 1 5y SR ¥ smorsomsarmrt s TR~ Mo
—CAP

Interrupts of 80286
The Interrupts of 80286 may be divided into three categories,

1. External or hardware interrupts
2. INT instruction or software interrupts

3. Interrupts generated internally by exceptions
While executing an instruction, the CPU may sometimes be confronted with a special situation

because of which further execution is not permitted. While trying to execute a divide by zero instruction,
the CPU detects a major error and stops further execution.

In this case, we say that an exception has been generated. In other words, an instruction exception
is an unusual situation encountered during execution of an instruction that stops further execution. The
return address from an exception, in most of the cases, points to the instruction that caused the exception.
As in the case of 8086, the interrupt vector table of 80286 requires 1Kbytes of space for storing 256,
four-byte pointers to point to the corresponding 256 interrupt service routines (ISR).

29

EC 8691-Microprocessor and Microcontroller Unit-2

Each pointer contains a 16-bit offset followed by a 16-bit segment selector to point to a particular
ISR. The calculation of vector pointer address in the interrupt vector table from the (8-bit) INT type is
exactly similar to 8086. Like 8086, the 80286 supports the software interrupts of type 0 (INT 00) to type
FFH (INT FFH).
Maskable Interrupt INTR: This is a maskable interrupt input pin of which the INT type is to be
provided by an external circuit like an interrupt controller. The other functional details of this interrupt
pin are exactly similar to the INTR input of 8086.
Non-Maskable Interrupt NMI: It has higher priority than the INTR interrupt. Whenever this interrupt is
received, a vector value of 02 is supplied internally to calculate the pointer to the interrupt vector table.
Once the CPU responds to a NMI request, it does not serve any other interrupt request (including NMI).
Further it does not serve the processor extension (coprocessor) segment overrun interrupt, till either it
executes IRET or it is reset. To start with, this clears the IF flag which is set again with the execution of
IRET, i.e. return from interrupt.
Single Step Interrupt

As in 8086, this is an internal interrupt that comes into action, if trap flag (TF) of 80286 is set.
The CPU stops the execution after each instruction cycle so that the register contents (including flag
register), the program status word and memory, etc. may be examined at the end of each instruction
execution. This interrupt is useful for troubleshooting the software. An interrupt vector type 01 is
reserved for this interrupt.
Interrupt Priorities:

If more than one interrupt signals occur simultaneously, they are processed according to their
priorities as shown below:

Order Interrupt
1 Interrupt exception
2 Single step
3 NMI
4 Processor extension segment overrun
5 INTR
6 INT instruction

30

EC 8691-Microprocessor and Microcontroller Unit-2

FUNCTION Interrupt Number
Divide error exception 0
Single step interrupt 1
NMI interrupt 2
Breakpoint interrupt 3
INTO detected overflow exception 4
BOUND range exceeded exception 5
Invalid opcode exception 6
Processor extension not available exception 7

Intel reserved, do not use 8-15
Processor extension error interrupt 16
Intel reserved, do not use 17-31
User defined 32-255

Signal Description of 80286

CLK: This is the system clock input pin. The clock frequency applied at this pin is divided by two
internally and is used for deriving fundamental timings for basic operations of the circuit. The clock is
generated using 8284 clock generator.

Dis-Do: These are sixteen bidirectional data bus lines. A23-Ao: These are the physical address output lines
used to address memory or I/O devices. The address lines A23 - A16 are zero during I/O transfers

BHE: This output signal, as in 8086, indicates that there is a transfer on the higher byte of the data bus
(D15 -D8).

S1, SO: These are the active-low status output signals which indicate initiation of a bus cycle and with
M/10 and COD/INTA, they define the type of the bus cycle.

M/ 10: This output line differentiates memory operations from 1/O operations. If this signal is it “0”
indicates that an 1/0 cycle or INTA cycle is in process and if it is “1” it indicates that a memory or a
HALT cycle is in progress.

COD/ INTA: This output signal, in combination with M/ 10 signal and S1 , SO distinguishes different
memory, 1/0 and INTA cycles.

LOCK: This active-low output pin is used to prevent the other masters from gaining the control of the
bus for the current and the following bus cycles. This pin is activated by a "LOCK" instruction prefix, or
automatically by hardware during XCHG, interrupt acknowledge or descriptor table access

READY This active-low input pin is used to insert wait states in a bus cycle, for interfacing low speed
peripherals. This signal is neglected during HLDA cycle.

HOLD and HLDA This pair of pins is used by external bus masters to request for the control of the
system bus (HOLD) and to check whether the main processor has granted the control (HLDA) or not, in
the same way as it was in 8086.

INTR: Through this active high input, an external device requests 80286 to suspend the current
instruction execution and serve the interrupt request. Its function is exactly similar to that of INTR pin of
8086.

NMI: The Non-Maskable Interrupt request is an active-high, edge-triggered input that is equivalent to an
INTR signal of type 2. No acknowledge cycles are needed to be carried out.

PEREG and PEACK (Processor Extension Request and Acknowledgement)

31

EC 8691-Microprocessor and Microcontroller Unit-2

Processor extension refers to coprocessor (80287 in case of 80286 CPU). This pair of pins
extends the memory management and protection capabilities of 80286 to the processor extension 80287.
The PEREQ input requests the 80286 to perform a data operand transfer for a processor extension. The
PEACK active-low output indicates to the processor extension that the requested operand is being
transferred.

BUSY and ERROR: Processor extension BUSY and ERROR active-low input signals indicate the
operating conditions of a processor extension to 80286. The BUSY goes low, indicating 80286 to
suspend the execution and wait until the BUSY become inactive.

In this duration, the processor extension is busy with its allotted job. Once the job is completed
the processor extension drives the BUSY input high indicating 80286 to continue with the program
execution. An active ERROR signal causes the 80286 to perform the processor extension interrupt while
executing the WAIT and ESC instructions. The active ERROR signal indicates to 80286 that the
processor extension has committed a mistake and hence it is reactivating the processor extension
interrupt.

CAP: A 0.047 uf, 12V capacitor must be connected between this input pin and ground to filter the output
of the internal substrate bias generator. For correct operation of 80286 the capacitor must be charged to
its operating voltage. Till this capacitor charges to its full capacity, the 80286 may be kept stuck to reset
to avoid any spurious activity.

Vss: This pin is a system ground pin of 80286.

Vee: This pin is used to apply +5V power supply voltage to the internal circuit of 80286. RESET The
active-high RESET input clears the internal logic of 80286, and reinitializes it.

RESET The active-high reset input pulse width should be at least 16 clock cycles. The 80286 requires at
least 38 clock cycles after the trailing edge of the RESET input signal, before it makes the first opcode
fetch cycle.

Real Address Mode

* Act as a fast 8086

* Instruction set is upwardly compatible

* It address only 1 M byte of physical memory using Ao-Auo.

* In real addressing mode of operation of 80286, it just acts as a fast 8086. The instruction set is upward
compatible with that of 8086.

The 80286 addresses only 1Mbytes of physical memory using Ao- A19s. The lines A20-A23 are not
used by the internal circuit of 80286 in this mode. In real address mode, while addressing the physical
memory, the 80286 uses BHE along with Ao- A1s. The 20-bit physical address is again formed in the
same way as that in 8086.

The contents of segment registers are used as segment base addresses. The other registers,
depending upon the addressing mode, contain the offset addresses. Because of extra pipelining and other
circuit level improvements, in real address mode also, the 80286 operates at a much faster rate than 8086,
although functionally they work in an identical fashion. As in 8086, the physical memory is organized in
terms of segments of 64Kbyte maximum size.

An exception is generated, if the segment size limit is exceeded by the instruction or the data. The
overlapping of physical memory segments is allowed to minimize the memory requirements for a task.
The 80286 reserves two fixed areas of physical memory for system initialization and interrupt vector
table. In the real mode the first 1Kbyte of memory starting from address 0000H to 003FFH is reserved
for interrupt vector table. Also the addresses from FFFFOH to FFFFFH are reserved for system
initialization.

The program execution starts from FFFFH after reset and initialization. The interrupt vector table
of 80286 is organized in the same way as that of 8086. Some of the interrupt types are reserved for
exceptions, single-stepping and processor extension segment overrun, etc

32

EC 8691-Microprocessor and Microcontroller Unit-2

When the 80286 is reset, it always starts the execution in real address mode. In real address mode,
it performs the following functions: it initializes the IP and other registers of 80286, it prepares for
entering the protected virtual address mode.

15 0
ooco| OFFsET | OFFSET
P _: —
15 _ ‘o
SEGMENT || | o | SEGMENT
| SELECTION | |0099| ADDRESS
e e
[|
i
J
\ E 7
\ /
\ ADDER ,’
/
| 20-BIT PHYSICAL
| MEMORY ADDRESS

Fig. Rcal Addrcss Mode Address Calculation

Protected Virtual Address Mode (PVAM)

80286 is the first processor to support the concepts of virtual memory and memory management.
The virtual memory does not exist physically it still appears to be available within the system. The
concept of VM is implemented using Physical memory that the CPU can directly access and secondary
memory that is used as a storage for data and program, which are stored in secondary memory initially.

The Segment of the program or data required for actual execution at that instant is fetched from
the secondary memory into physical memory. After the execution of this fetched segment, the next
segment required for further execution is again fetched from the secondary memory, while the results of
the executed segment are stored back into the secondary memory for further references. This continues
till the complete program is executed.

During the execution the partial results of the previously executed portions are again fetched into
the physical memory, if required for further execution. The procedure of fetching the chosen program
segments or data from the secondary storage into physical memory is called swapping. The procedure of
storing back the partial results or data back on the secondary storage is called unswapping. The virtual
memory is allotted per task.

The 80286 is able to address 1 G byte (230 bytes) of virtual memory per task. The complete virtual
memory is mapped on to the 16Mbyte physical memory. If a program larger than 16Mbyte is stored on
the hard disk and is to be executed, if it is fetched in terms of data or program segments of less than
16Mbyte in size into the program memory by swapping sequentially as per sequence of execution.

Whenever the portion of a program is required for execution by the CPU, it is fetched from the
secondary memory and placed in the physical memory is called swapping in of the program. A portion of
the program or important partial results required for further execution, may be saved back on secondary
storage to make the PM free for further execution of another required portion of the program is called
swapping out of the executable program.

33

UNIT 11
I/0 INTERFACING

Memory Interfacing and 1/O interfacing - Parallel communication interface — Serial communication
interface — D/A and A/D Interface - Timer — Keyboard /display controller — Interrupt controller — DMA
controller — Programming and applications Case studies: Traffic Light control, LED display , LCD display,
Keyboard display interface and Alarm Controller.

1. Explain in detail about Memory Interfacing and 1/O interfacing of 8086.

8086 memory is divided into two memory banks and each memory bank size is 512K X 8 bits (Shown in
fig-1)

* Low-bank holds even addressed bytes 00000H through FFFFEH
» High-bank holds odd addressed bytes 00001H through FFFFFH
« Address/data bus is demultiplexed.
* Input bus: 20-bit address bus (Aie through Ao), and BHE*
Al1-Al19, address lines select storage location
If AO = 0 enables low memory bank
If BHE* = 0 enables high memory bank
« Input / Output bus: 16-bit data bus (D1s through Do)

D7-D0O : Even addressed byte accesses
D15-D8 : Odd addressed byte accesses
D15-DO0 : Word accesses

Fig-1: Memory Hardware organization of address space

A type of data writes that may take place:

* Byte to a storage location in the upper (odd) bank

* Byte to a storage location in the lower (even) bank

» Word to storage locations in both banks

» Write control logic must decode AOL, BHEL* and MWTC* to produce independent write signals
WRU* and WRL* (Shown in fig -2)

T432

Fig -2: 2-input OR gate solution for decoding write control signals

* MWTC* =0 enables both gates

BHEL* Ao WRU* WRL* Bank selection

0 0 0 Both banks enabled
0 1 0 Lower (even) bank enabled
1

0 1 Upper (odd) bank enabled

« All accesses take a minimum of one bus cycle of duration
@5MHz—800ns
@8MHz—500ns

During all memory accesses one of three bus cycle status code are output by the MPU (Microprocessor
Unit)

* Opcode fetch

* Read memory

* Write memory

* 8288 decodes to produce appropriate control / command signals
* MRDC* Opcode fetch/memory read

* MWTC* Memory write

« AMWC* Advanced memory write

Building blocks of the maximum mode 8086 memory interface

It has the following blocks shown in fig-3.:
* 8288 bus controller

» Address bus latch

* Address decoder

* Data bus transceiver/buffer

* Bank read control logic

* Bank write control logic
* Memory subsystem

Parts of address applied to address inputs of memory subsystem, address decoder, and read/ write control
logic banks
» Bank selection is accomplished in two ways:

— separate write signal is developed to select a write to each bank of the memory
— separate decoders are used for each bank
» The first technique is by far the least costly approach to memory interface.

» The second technique is only used in a system that must achieve most efficient use of the power
supply.

Address
decoder |

)

Bank
A | write
~ | control

oLk ALE » logic L

MWTC Memory
Bus ' : subsystem
controller Bank RD

e read
8288 MRDC ~| control

logic

DT/R DEN

Y [
DIR EN

Data
Do’ D|5) bus
‘ transceiver

buffer

Fig-3 : Maximum mode of 8086 memory interface

1/0 Interfacing
e To communicate with the outside world, microprocessor use Peripherals, 1/0 Devices such as
keyboards, A/D converters, input devices and output devices such as CRT, Printers etc.,

3

These input and output devices are called Peripherals or 1/Os.

Peripherals are connected to the microprocessor through electronic circuits known as interfacing
circuits.

These interfacing circuits convert the data available from an input device into compatible format for
the computer.

The interface associated with the output device converts the output of the microprocessor into the
desired peripheral format.

There are two schemes (Interfacing Configurations) for the allocation of addresses to memories and
input/output devices. They are

Interfacing Configurations
1. Memory mapped I/0
2. 1/0 mapped 1/0 (Isolated 1/0O)

Isolated 1/0O: It uses 1/O instructions (IN & OUT) and it has its own address space for 1/O ports
(O000H-FFFFH), isolated from the memory address space.

Memory mapped 1/0O: uses memory reference instructions (e.g. MOV). So address space is shared
between memory and 1/0.

» Memory-mapped 1/0 does not use the IN or OUT instructions.
It uses any instruction that transfers data between the microprocessor and memory.
— treated as a memory location in memory map
Same as interfacing 8086 memory in Minimum Mode and Maximum Mode
I/0O devices are treated separately from memory
Address 0000 to 00FF is referred to page 0.
Special instructions exist for this address range
Advantage: Any memory transfer instruction can access the 1/0 device.

Disadvantage: A portion of memory system is used as the I/0 map and reduces memory available
to applications

Mnemonic Meaning Format Operation

IN Input direct IN Acc,Port (Acc) « (Port) Acc= AL or AX
Input indirect (variable) IN Ace,DX (Acc) + ((DX)

Output direct : OUT Port,Acc (Port)} « (Acc)

Output indirect (vaﬁgble) OUT DX, Acc ((DX)) + (Acc)

Memory mapped 1/0O
In this type of 1/O interfacing, the 8086 uses 20 address lines to identify an 1/0O device. The 1/0

device is connected as memory device.

The 8086 uses same control signals and instructions to access 1/0. RD and WR signals are
activated indicating memory bus cycle.

1/0 mapped 1/O:

8086 has special instructions IN and OUT to transfer data through the input/output ports in 1/0
mapped 1/O system.

The IN instruction copies data from an input port to the Accumulator. The OUT instruction
copies a byte from AL or a word from AX to the specified port.

The M/10 signal is always low when 8086 is executing these instructions. Address of 1/0
device is 8-bit or 16-bit long.

Program to operate in 1/0 mode.

» To write the data 00H into Output port 62H:
MOV AL,00H
OUT 62H,AL
or
MOV AL,00H
MOV DX,62H
OUT DX,AL
* To read a byte from Input port address 71H:
IN AL,71H
or
MOV DX,71H
IN AL,DX

Minimum mode interface

1/0 device
0

o
-
I/O device

1

.

. .

.

.

: -

- -

.

RD I/O interface
circuitry
WR
M/IO
DT/R
DEN

—p-| 1/O device

o

N

Fig-4: 1/O interfacing with minimum mode

Maximum mode interface

Fig-5: 1/O interfacing with maximum mode

2. Describe the internal block diagram of 8255 (December 2010) (or)
Parallel communication interface (8255)
(Programmable peripheral interface)
e The 8255 is a general purpose programmable 1/0 device used for parallel data transfer.
e It has 24 1/0 programmable pins which can be grouped into three 8 bit parallel ports of Port A ,
Port B and Port C. It is TTL compatible.
The eight bit ports of PORT C can be used as individual bits or be grouped into two 4 bit ports.
Cupper (cu) and Crower (cL).
The functions of 8255 are classified according to two modes. The Bit Set/Reset mode and the 1/0
mode. The BSR mode is used to set or reset the bits in Port C.
The 8-bit data bus buffer is controlled by the read/write control logic. The read/write control logic
manages all of the internal and external transfers of both data and control words.
RD , WR, A1, Acand RESET are the inputs provided by the microprocessor to the READ/ WRITE
control logic of 8255.
The 8-bit, 3-state bidirectional buffer is used to interface the 8255 internal data bus with the
external system data bus.
This buffer receives or transmits data based on the execution of input or output instructions by the
microprocessor. The control word is also transferred through the buffer.

Functions of Pin:
The signal descriptions of 8255 are briefly presented as follows:
« PA7-PAo: These are eight port A lines that acts as either latched output or buffered input lines

depending upon the control word loaded into the control word register.

« PC7-PCa: Upper nibble of port C lines. They may act as either output latches or input buffers lines.

» This port also can be used for generation of handshake lines in mode 1 or mode 2.

* PC3-PCo: Lower nibble of port C lines. They may act as either output latches or input buffers lines.

* This port also can be used for generation of handshake lines in mode 1 or mode 2.
6

» PBo-PB7: These are eight port B lines which are used as latched output lines or buffered input lines
in the same way as port A.

* A1-Ao: These are the address input lines and are driven by the microprocessor.

In case of 8086 systems, if the 8255 is to be interfaced with lower order data bus, the Aoand A1
pins of 8255 are connected with A1and Az of 8086 respectively.
» These address lines Ai- Ao are used for addressing any one of the four registers, i.e. three ports and

a control word register as given in table below.

Al | AO [Select

0 0 Pa

Ps

Pc

Control register

» RD : This is the input line driven by the microprocessor and should be low to indicate read

operation to 8255.

* WR : This is an input line driven by the microprocessor. A low on this line indicates write
operation.

« CS: This is a chip select line. If this line goes low, it enables the 8255 to respond to RD and WR
Signals.

» Do-Dr: These are the data bus lines carry data or control word to/from the micro